Blog

Archive for the ‘bioengineering’ category: Page 119

Feb 16, 2020

Why Bill Gates thinks gene editing and artificial intelligence could save the world

Posted by in categories: bioengineering, biotech/medical, genetics, health, robotics/AI

Bill-gates-thinks-gene-editing-artificial-intelligence-save-world.


Microsoft co-founder Bill Gates has been working to improve the state of global health through his nonprofit foundation for 20 years, and today he told the nation’s premier scientific gathering that advances in artificial intelligence and gene editing could accelerate those improvements exponentially in the years ahead.

“We have an opportunity with the advance of tools like artificial intelligence and gene-based editing technologies to build this new generation of health solutions so that they are available to everyone on the planet. And I’m very excited about this,” Gates said in Seattle during a keynote address at the annual meeting of the American Association for the Advancement of Science.

Continue reading “Why Bill Gates thinks gene editing and artificial intelligence could save the world” »

Feb 15, 2020

Aging and Stem Cells | Theodore Ho | TEDxMiddlebury

Posted by in categories: bioengineering, biotech/medical, genetics, life extension, nanotechnology, neuroscience

Dr. Theodore Ho talks about the rapidly expanding possibilities of stem cells to be used in reversing or slowing the aging process. He discusses his previous and current work with the brain, including such methods as tissue clearing, multifiber photometry and optogenetics, and single resolution calcium imaging and control. Dr. Ho is a neuroscientist and stem cell biologist studying the mechanisms and causes of biological aging and potential strategies to slow or reverse them, in order to prevent the onset of age

Associated diseases to help us live healthier and longer lives.

Continue reading “Aging and Stem Cells | Theodore Ho | TEDxMiddlebury” »

Feb 14, 2020

In vitro self-replication and multicistronic expression of large synthetic genomes

Posted by in categories: bioengineering, biotech/medical

The generation of a chemical system capable of replication and evolution is a key objective of synthetic biology. This could be achieved by in vitro reconstitution of a minimal self-sustaining central dogma consisting of DNA replication, transcription and translation. Here, we present an in vitro translation system, which enables self-encoded replication and expression of large DNA genomes under well-defined, cell-free conditions. In particular, we demonstrate self-replication of a multipartite genome of more than 116 kb encompassing the full set of Escherichia coli translation factors, all three ribosomal RNAs, an energy regeneration system, as well as RNA and DNA polymerases. Parallel to DNA replication, our system enables synthesis of at least 30 encoded translation factors, half of which are expressed in amounts equal to or greater than their respective input levels. Our optimized cell-free expression platform could provide a chassis for the generation of a partially self-replicating in vitro translation system.

Feb 12, 2020

Designer probiotic treatment for cancer immunotherapy

Posted by in categories: bioengineering, biotech/medical

Researchers at Columbia Engineering have engineered probiotics to safely deliver immunotherapies within tumors. These include nanobodies against two proven therapeutic targets—PD-L1 and CTLA-4. The drugs are continuously released by bacteria and continue to attack the tumor after just one dose, facilitating an immune response that ultimately results in tumor regression. The versatile probiotic platform can also be used to deliver multiple immunotherapies simultaneously, enabling the release of effective therapeutic combinations within the tumor for more difficult-to-treat cancers like colorectal cancer. The study is published today in Science Translational Medicine.

Antibodies that target immune checkpoints, PD-L1 and CTLA-4, have revolutionized immunotherapy treatments, achieving success in a subset of cancers. However, systemic delivery of these antibodies can also cause substantial side effects with high percentages of patients reporting adverse reactions. Furthermore, although combinations of these therapies are more effective than single therapy regimens, they also produce severe toxicities, sometimes leading to drug discontinuation. The team, led by Tal Danino, assistant professor of biomedical engineering, aimed to address these challenges.

“We wanted to engineer a safe probiotic vehicle capable of delivering immune checkpoint therapies locally to minimize side effects,” says Danino, who is also a member of the Herbert Irving Comprehensive Cancer Center and Data Science Institute. “We also wanted to broaden the versatility of the system by producing a range of immunotherapeutic combinations, including cytokines that could further elicit antitumor immunity, but are otherwise difficult to systemically deliver because of toxicity concerns.”

Feb 12, 2020

Following the first U.S. test of CRISPR gene editing in patients with advanced cancer

Posted by in categories: bioengineering, biotech/medical

Following the first U.S. test of CRISPR gene editing in patients with advanced cancer, researchers report findings in Science that represent an important step toward the ultimate goal of using gene editing to help a patient’s immune system attack cancer. Read the research: https://fcld.ly/y1nst2o

Feb 8, 2020

Ireland — World’s First “Age Friendly” Country by World Health Organization (WHO) Network — Catherine McGuigan, National Program Lead, Age Friendly Ireland — ideaXme — Ira Pastor

Posted by in categories: aging, bioengineering, biotech/medical, economics, finance, genetics, geopolitics, governance, health, life extension

Feb 7, 2020

Embrace human genome editing

Posted by in categories: bioengineering, biotech/medical, genetics, government, neuroscience, time travel

Imagine then, the emancipatory potential of genome editing for these millions.

Realizing this potential, however, will require that genome editing meet with societal approval. The typical response right now when you talk to someone about genetic engineering or reproductive technology is a reference to ‘designer babies,’ eugenics, Nazism, and other evils. These arguments have a very powerful emotional hold over many people, but in my opinion, they simply don’t stand up to scrutiny.

Continue reading “Embrace human genome editing” »

Feb 5, 2020

Scientists Release Genetically Engineered Moths for First Time

Posted by in categories: bioengineering, biotech/medical, food, genetics, sustainability

The diamondback moth is a huge pest. It eats a variety of crops, but is largely resistant to insecticides, resulting in upwards of $5 billion in losses every year.

That could soon change, though, as an international team of researchers has created a strain of genetically engineered diamondback moths that could suppress the pest population in a sustainable way — and they just released them into the wild for the first time.

For the study, published Wednesday in the journal Frontiers in Bioengineering and Biotechnology, the researchers engineered the moths so that when the males of the strain mated with wild females, the female offspring would die during the caterpillar life stage.

Feb 5, 2020

Step aside CRISPR, RNA editing is taking off

Posted by in categories: bioengineering, biotech/medical, genetics

But CRISPR editing — at least as a therapeutic technique in people — has turned out to be more difficult than initially thought. Researchers have documented ways that Cas9, one of the enzymes used in CRISPR gene editing, could trigger immune responses, or cause accidental changes to the genome that would be permanent. RNA editing, by contrast, could allow clinicians to make temporary fixes that eliminate mutations in proteins, halt their production or change the way that they work in specific organs and tissues. Because cells quickly degrade unused RNAs, any errors introduced by a therapy would be washed out, rather than staying with a person forever.


Making changes to the molecular messengers that create proteins might offer flexible therapies for cancer, pain or high cholesterol, in addition to genetic disorders.

Feb 3, 2020

DR STEPHEN BADYLAK — Regen Med Strategies for Tissue & Organ Replacement (Long Version)

Posted by in categories: bioengineering, biotech/medical, life extension

Regenerative medicine and furthermore tissue engineering are realities for some time but well hidden from the public by msm somehow.


Dr. Stephen Badylak, Director of the Center for Pre-Clinical Tissue Engineering, McGowan Institute for Regenerative Medicine.

Continue reading “DR STEPHEN BADYLAK — Regen Med Strategies for Tissue & Organ Replacement (Long Version)” »