Toggle light / dark theme

Injury and inflammation promote cancer progression at the anorectal junction

Petitpas et al. dissect the single-cell transcriptome underlying the sequential steps of pre-malignant lesions and early anorectal cancer, mimicking disease evolution seen in patients, at the epithelial and immune level. They reveal a key epithelial-immune cell crosstalk involving IL-17-producing T lymphocytes and neutrophils as essential for the dysplasia-carcinoma progression.

Evolution of long scalp hair in humans

Hair is a signature mammalian characteristic with versatile functions, including thermoregulation, protection from ultraviolet radiation, physical and chemical insults, sensation of pain, vibration and touch, and defence from predators.1–3 Human hair patterns, which feature prominently reduced body hair length combined with extremely long scalp hair,4–8 are an outlier among mammals. The likely original function of long scalp hair was to shield the sun-exposed head of upright-standing human ancestors. Long scalp hair probably reduced the amount of sweat secretion required to counter the total thermal load experienced by individuals from incoming solar radiation in equatorial Africa, and from endogenous muscle-generated heat during exercise.9 Tightly curled scalp hair is more efficacious at reducing heat gains compared with other hair shapes, and such hair probably represents the ancestral scalp hair form (Figure 1).9 Variability in hair shapes increased over time. These variations are thought to be associated with the dispersal of anatomically modern humans (AMHs) and accompanying effects of populational bottlenecks, admixture with Neanderthals and Denisovans, and adaptations to diverse environments at new geographic locations (Figure 1a).10 Extreme scalp hair length was probably universal across all African AMH populations and available for diverse functions, other than thermoregulation. In this sense, long scalp hair is an excellent example of exaptation, a form of evolutionary co-option,11 whereby it acquired secondary essential functions in communicating social cues.12 Under these conditions, unwanted hair loss triggered significant psychological stress in affected individuals.

Despite variations, both across different species and different body regions, hair typically has a finite length. A fully grown hair fibre commonly remains attached within its hair follicle (HF) until a new round of growth replaces it. In a typical adult human, approximately 90% of scalp HFs are in active growth (anagen) at any given time, which lasts for 5–7 years.13,14 This is in contrast to small (vellus) body HFs, which have short-lasting anagen, such as 22–28 days on the upper arm.15 When large (terminal) scalp HFs reduce in size, start growing vellus-like hairs, and/or stop growing for an extended period, they are considered to be entering a pathological state.

Elucidation of long scalp hair roles in human prehistory requires further investigation of its thermoregulatory benefit vs. the physical burden it may have caused by hindering vision and locomotion. Continuous hair growth is also metabolically expensive, requiring synthesis of large quantities of keratins and keratin-associated proteins.1,2,16,17 Conversely, highly visible long scalp hair effectively communicates a good state of fitness, whereas compromised hair growth implies poor nutrition and disease.17,18 Indeed, kwashiorkor, a disease caused by severe dietary protein deficit, features dramatic hair thinning and depigmentation.19 The ornamental potential of long hair enables the use of distinct hairstyles to signify a person’s social position, creativity and manual skills.20 Therefore, in prehistory, hair styling likely became an essential part of social communication, which probably further promoted long-hair trait selection.

New dataset maps global city boundaries in high resolution from 2000 to 2022

A research team led by Prof. Liu Liangyun from the Aerospace Information Research Institute of the Chinese Academy of Sciences (AIRCAS) has produced the first comprehensive, high-resolution map of global city and town boundaries, offering a view of how urban boundaries have expanded and transformed over the past two decades. The new dataset—derived from 30-meter-resolution satellite observations—fills a long-standing gap in global urban studies.

Cities and towns are the dominant form of human settlement, playing a crucial role in sustaining ecological balance and advancing sustainable development. However, their complex spatial structures and rapid evolution have made high-resolution global urban boundary datasets scarce. To address this gap, the team integrated the GISD30 global impervious surface dynamic dataset with LandScan global population data to develop the Global City and Town Boundaries (GCTB) Dataset, which covers the period from 2000 to 2022.

Published in Scientific Data, the study details the researchers’ development of a morphology-oriented boundary delineation framework that combines kernel density estimation (KDE) and cellular automata (CA) to accurately map urban boundaries. When compared with multiple reference datasets, the GCTB Dataset showed the strongest agreement with the manually curated Atlas of Urban Expansion, achieving an R2 value of approximately 0.88—indicating high reliability in capturing urban extents.

Genomic insights into karyotype evolution and adaptive mechanisms in Polygonaceae species

Liu et al. report chromosome-level genomes of 11 species across 10 Polygonaceae genera (including four previously published genomes), which encompass diverse habitats. Integrating genomic and transcriptomic analyses, this study provides insights into the evolutionary adaptation strategies of Polygonaceae to thrive in various habitats.

The Purpose of Life and Evolution is to “Become like God” — Ray Kurzweil

As we evolve we become more intelligent, loving, creative and beautiful, so actually we are moving exponentially to have greater levels of the very properties we ascribe to god without limit. But we never become literally infinite but we are moving exponentially in that direction so that we become more God-like. Evolution is a spiritual process that moves us closer to God — Ray Kurzweil.

Other Related Videos

The Virtual Cell Will Be More Like Gwas Than Alphafold

There has been significant discussion recently on the concept of the “virtual cell.” I want to summarize the key concepts regarding what the field wants from a virtual cell and the challenges we face. In particular, the current trajectory reminds me of the evolution of statistical genetics (GWAS) and Mendelian disorders—analogies that I believe point to the most likely path for the field’s development.

Raindrops form ‘sandballs’ as they roll downhill, contributing more to erosion than previously thought

What happens as a raindrop impacts bare soil has been fairly well-studied, but what happens to raindrops afterward is poorly understood. We know that the initial splash of raindrops on soil contributes to erosion, but a new study, published in the Proceedings of the National Academy of Sciences, finds that the journey of the raindrop downhill might have an even bigger impact on erosion than the initial splash.

Somewhere on the “Route de la Sorge” in Ecublens, Switzerland, members of the research team observed natural raindrops hitting the surface of a hillside and noticed that they collected particles of sand as they rolled downhill. This spurred the researchers to document the event with a camera and then take the idea to the lab.

In the lab, they constructed a 1.2 meter long bed covered with dry silicate sand and tilted at an angle of 30°. The lab conditions enabled the team to properly document the phenomenon by recording the evolution of the raindrops’ shapes as they rolled and take precise measurements of the relevant parameters. They found that each raindrop formed what they refer to as “sandballs” and that they took on differing shapes, depending on the conditions, and that the sandballs can move up to 10 times more soil than the initial splash alone.

The Incredible Science of Bioprinting

Dive into the remarkable world of bioprinting in this comprehensive video. We’ll be exploring the core concepts of bioprinting — a pioneering technique that uses biological materials to create structures that mimic natural tissues, organs, and even cells. Understand the sophisticated science behind this process, and learn how bio-inks are formulated and layered to build live cells. We’ll also embark on a historical journey, tracing the origins and evolution of bioprinting, and how it is reshaping modern medicine. From overcoming organ shortages to paving the way for personalized treatments, bioprinting is revolutionizing healthcare. Join us as we unpack this fascinating technology and its promising future.

For more information on how patents can help drive your innovation.
visit https://www.patsnap.com/

From concept to commercialization, Patsnap’s innovation intelligence platform breaks boundaries to connect innovators with insights.

Follow us on social for more!
LinkedIn: / patsnap.
Facebook: / patsnap.
Twitter: / patsnap.
Instagram: / _patsnap.

PatSnap (UK) Limited (PatSnap) hereby disclaims all representations and warranties, express or implied, with respect to information, advertisements and all other ad-hoc materials published by us. PatSnap does not represent or warrant that the information accessible on this material is accurate, complete or current, and makes no claims or warranties of any kind, including the suitability of information, or merchantability and fitness for a particular purpose. It is the sole responsibility of the Recipient of such information to comply with all applicable laws, rules and regulations and they are responsible for meeting any regulatory, compliance and legal obligations. All due-diligence and vetting of services are the sole responsibility of the Recipient.

New MacSync malware dropper evades macOS Gatekeeper checks

The latest variant of the MacSync information stealer targeting macOS systems is delivered through a digitally signed, notarized Swift application.

Security researchers at Apple device management platform Jamf say that the distribution method constitutes a significant evolution from past iterations that used less sophisticated “drag-to-Terminal” or ClickFix tactics.

“Delivered as a code-signed and notarized Swift application within a disk image named zk-call-messenger-installer-3.9.2-lts.dmg, distributed via https://zkcall.net/download, it removes the need for any direct terminal interaction,” the researchers say in a report today.

/* */