Toggle light / dark theme

Phones, appliances, and humans all generate heat that usually escapes into the environment as waste energy. Thermoelectric generators, which convert temperature differences into electricity, are a way to capture that wasted heat for power.

Researchers have now made a thermoelectric generator (TEG) that is soft and stretchy and that biodegrades completely when exposed to the environment. Unlike conventional rigid thermoelectric devices, this one, reported in the journal Science Advances, could be easily integrated into fabrics, allowing for body-heat-powered wearable sensors or temperature-detecting disposable face masks.

Environmental Gerontology & Vulnerability Science For Health And Well-Being — Dr. Amir Baniassadi, Ph.D. — Marcus Institute for Aging Research, Hebrew SeniorLife / Harvard Medical School.


Dr. Amir Baniassadi, Ph.D. is an Instructor of Medicine at Harvard Medical School and an Assistant Scientist in Marcus Institute for Aging Research (https://www.marcusinstituteforaging.o… where he works on environmental impacts on health and well-being of older populations.

Dr. Baniassadi works on the impacts of ambient air temperature and air quality (both indoors and outdoors) on outcomes related to the health and well-being of physiologically and socioeconomically vulnerable populations. His research applies novel environmental modeling and measurement techniques along with remote and long-term physiological and functional monitoring of individuals to establish relationships between exposure and outcome variables of interest outside clinical lab settings. The ultimate goal of his research is to develop environmental interventions that optimize the environment for health and longevity of older adults.

Imagine smartphones that can diagnose diseases, detect counterfeit drugs or warn of spoiled food. Spectral sensing is a powerful technique that identifies materials by analyzing how they interact with light, revealing details far beyond what the human eye can see.

Traditionally, this technology required bulky, expensive systems confined to laboratories and industrial applications. But what if this capability could be miniaturized to fit inside a smartphone or ?

Researchers at Aalto University in Finland have combined miniaturized hardware and intelligent algorithms to create a powerful tool that is compact, cost-effective, and capable of solving real-world problems in areas such as health care, food safety and autonomous driving. The research is published in the journal Science Advances.

Current wearable and implantable biosensors still face challenges to improve sensitivity, stability and scalability. Here the authors report inkjet-printable, mass-producible core–shell nanoparticle-based biosensors to monitor a broad range of biomarkers.

The future of medicine may very well lie in the personalization of health care—knowing exactly what an individual needs and then delivering just the right mix of nutrients, metabolites, and medications, if necessary, to stabilize and improve their condition. To make this possible, physicians first need a way to continuously measure and monitor certain biomarkers of health.

To that end, a team of Caltech engineers has developed a technique for inkjet printing arrays of special that enables the mass production of long-lasting wearable sweat sensors. These sensors could be used to monitor a variety of biomarkers, such as vitamins, hormones, metabolites, and medications, in real time, providing patients and their physicians with the ability to continually follow changes in the levels of those .

Wearable biosensors that incorporate the new nanoparticles have been successfully used to monitor metabolites in patients suffering from long COVID and the levels of chemotherapy drugs in at City of Hope in Duarte, California.

If you have ever had your blood drawn, whether to check your cholesterol, kidney function, hormone levels, blood sugar, or as part of a general checkup, you might have wondered why there is not an easier, less painful way.

Now there might be. A team of researchers from Caltech’s Cherng Department of Medical Engineering has unveiled a new wearable sensor that can detect in even minute levels of many common nutrients and biological compounds that can serve as indicators of human health.

The was developed in the lab of Wei Gao, assistant professor of , Heritage Medical Research Institute investigator, and Ronald and JoAnne Willens Scholar. For years, Gao’s research has focused on with medical applications, and this latest work represents the most precise and sensitive iteration yet.

QUT researchers are part of an international group who have explored ways in which organic transistors are being developed for use as wearable health sensors.

The currently available bioelectronic devices, such as pacemakers, that can be embedded with the are mostly based on rigid components.

However, the next-generation devices—which are researched and developed by bioelectronic engineers, , and materials scientists—will use soft organic materials that allow comfortable wearability as well as efficient monitoring of health.

Microscale light-emitting diodes (micro-LEDs) are emerging as a next-generation display technology for optical communications, augmented and virtual reality, and wearable devices. Metal-halide perovskites show great potential for efficient light emission, long-range carrier transport, and scalable manufacturing, making them potentially ideal candidates for bright LED displays.

However, manufacturing thin-film perovskites suitable for micro-LED displays faces serious challenges. For example, thin-film perovskites may exhibit inhomogeneous light emission, and their surfaces may be unstable when subjected to lithography. For these reasons, solutions are needed to make thin-film perovskites compatible with micro-LED devices.

Recently, a team of Chinese researchers led by Professor Wu Yuchen at the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences has made significant strides in overcoming these challenges. The team has developed a novel method for the remote epitaxial growth of continuous crystalline perovskite thin films. This advance allows for seamless integration into ultrahigh-resolution micro-LEDs with pixels less than 5 μm.