Toggle light / dark theme

A groundbreaking cement developed by Chinese scientists can now generate electricity from heat—thanks to a bio-inspired design that mimics plant stems. By combining hydrogel layers with traditional cement, this innovation enhances ion flow and delivers record-high thermoelectric efficiency. This breakthrough could power smart infrastructure, allowing buildings, roads, and bridges to self-generate electricity for sensors, lighting, and more—ushering in a new era of energy-smart cities.

A new study published in Nature Communications shows, for the first time, how heat moves—or rather, doesn’t—between materials in a high-energy-density plasma state.

The work is expected to provide a better understanding of inertial confinement fusion experiments, which aim to reliably achieve fusion ignition on Earth using lasers. How heat flows between a hot plasma and a material’s surface is also important in other technologies, including semiconductor etching and vehicles that fly at hypersonic speeds.

High-energy-density plasmas are produced only at extreme pressures and temperatures. The study shows that interfacial thermal resistance, a phenomenon known to impede in less extreme conditions, also prevents between different materials in a dense, super– state.

Urea, with the formula CO(NH2)2, is a chemical compound that is widely used in a range of sectors, including manufacturing, agriculture and various industries. Conventionally, this compound is produced via a two-step process that entails the synthesis of ammonia from nitrogen (N₂) and its subsequent reaction with carbon dioxide (CO₂).

This reaction occurs at and under , leading to the formation of a compound called ammonium carbamate. This compound is then decomposed at lower pressures, which ultimately produces and water.

Traditional processes for producing urea are very energy intensive, meaning that to produce desired amounts of urea they consume a lot of electrical power. Over the past few years, some engineers have thus been trying to devise more energy-efficient strategies to synthesize urea.

A team of chemists at Southern University of Science and Technology, working with a colleague from Zhejiang University, both in China, has engineered a metal–ligand complex that incorporates a reactive pocket to pre-organize prochiral substrates. Their paper is published in the journal Science.

Carbon radicals are being used as an intermediate in a variety of synthetic transformations. Because they have just one electron, they tend to be highly reactive, allowing for speedy reactions with little energy release.

Unfortunately, when working with prochiral substrates, where three different groups are attached to a single radical center, the ability to control the reaction becomes untenable. Prior research has shown that the underlying cause of these difficulties lies with the differences inherent in the alkyl group, where non-stereoselective reactions tend to dominate.

Recently, a research team achieved real-time tracking of electronic/magnetic structure evolution in Li-rich Mn-based materials during the initial cycling through the self-developed operando magnetism characterization device.

Their study, published in Advanced Materials, elucidated the critical mechanism underlying the oxygen reaction. The research team was led by Prof. Zhao Bangchuan from the Institute of Solid State Physics, the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, in collaboration with Prof. Zhong Guohua from the Shenzhen Institute of Advanced Technology and Prof. Li Qiang from Qingdao University.

With the rise of electric vehicles and the low-altitude economy, the demand for high-energy-density batteries is growing. Li-rich Mn-based materials stand out due to their high capacity, wide voltage range, and .

As global demand for electric vehicles and renewable energy storage surges, so does the need for affordable and sustainable battery technologies. A new study has introduced an innovative solution that could impact electrochemical energy storage technologies.

The research is published in the journal Advanced Functional Materials. The work was led by researchers from the Department of Materials Science and NanoEngineering at Rice University, along with collaborators from Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram.

Using an oil and gas industry’s byproduct, the team worked with uniquely shaped —tiny cones and discs—with a pure graphitic structure. These unusual forms produced via scalable pyrolysis of hydrocarbons could help address a long-standing challenge for anodes in battery research: how to store energy with elements like sodium and potassium, which are far cheaper and more widely available than lithium.

A quantum computer can solve optimization problems faster than classical supercomputers, a process known as “quantum advantage” and demonstrated by a USC researcher in a paper recently published in Physical Review Letters.

The study shows how , a specialized form of quantum computing, outperforms the best current classical algorithms when searching for near-optimal solutions to complex problems.

“The way quantum annealing works is by finding low-energy states in , which correspond to optimal or near-optimal solutions to the problems being solved,” said Daniel Lidar, corresponding author of the study and professor of electrical and computer engineering, chemistry, and physics and astronomy at the USC Viterbi School of Engineering and the USC Dornsife College of Letters, Arts and Sciences.

Power in Spain and Portugal has been mostly restored after a mass blackout paralysed most of the Iberian Peninsula.

Just over 92 per cent of Spain’s power is back, REE, the country’s electricity operator said early on Tuesday, and around 80 per cent of customers in Portugal are reported to have electricity.

Spain has declared a state of emergency in what is believed to be Europe’s largest power cut.