Founded in 1920, the NBER is a private, non-profit, non-partisan organization dedicated to conducting economic research and to disseminating research findings among academics, public policy makers, and business professionals.

Coordination nanosheets are a unique class of two-dimensional (2D) materials that are formed by coordination bonds between planar organic ligands and metal ions. These 2D nanomaterials are increasingly utilized in energy storage, electronic devices, and as electrode-based catalysts due to their excellent electronic, optical, redox properties, and catalytic activity.
Over the last decade, coordination nanosheets composed of various transition metal ions, such as nickel (Ni) ions linked to benzenehexathiol (BHT)—an organic compound—have been successfully synthesized in laboratories. However, their production has relied on a two-phase interfacial reaction that occurs between two immiscible phases of matter.
Furthermore, the selective synthesis of well-organized heterometallic nanosheets, containing two or more metal ions, has proven to be difficult. To address these two major issues limiting the production of novel coordination nanosheets, a team of researchers led by Professor Hiroshi Nishihara, from the Research Institute for Science and Technology (RIST), Tokyo University of Science (TUS), Japan, has conducted a series of innovative experiments.
Grab a coffee and your car is fully charged—this is how many people envision the future of mobility. But today’s batteries still fall short of this ideal. While modern lithium–ion batteries can charge from 20% to 80% in about 20 to 30 minutes, a full charge takes considerably longer—and fast charging puts significant stress on the cells.
A new international review study published in the journal Advanced Energy Materials now shows how lithium–sulfur batteries (LSBs) could overcome these limitations.
Researchers from Germany, India, and Taiwan—coordinated by Dr. Mozaffar Abdollahifar from the research group of Professor Rainer Adelung at Kiel University (CAU)—systematically analyzed hundreds of recent studies and identified mechanisms that can enable LSBs to operate stably and efficiently even at high charging rates. Their goal: charging times under 30 minutes—ideally as low as 12 minutes—combined with higher energy density and extended driving range.
A research team from Penn State has broken a 165-year-old law of thermal radiation with unprecedented strength, setting the stage for more efficient energy harvesting, heat transfer and infrared sensing. Their results, currently available online, are slated to be published in Physical Review Letters on June 23.
Efficiently capturing and storing excess heat, particularly below 200°C, is paramount to achieving a carbon-neutral society. Every year, factories and homes produce excess heat, much of which gets wasted. Likewise, as the world gets more reliant on renewable energy sources, the need to capture and store heat grows.
A collaboration between Tohoku University and the Japan Atomic Energy Agency has made significant strides in this regard, developing nanosheets of layered manganese dioxide (MnO2) that can store heat even below 100°C.
Details of the study were published in the journal Communications Chemistry.
Over the past few years, researchers have developed various quantum technologies, alternatives to classical devices that operate by leveraging the principles of quantum mechanics. These technologies have the potential to outperform their classical counterparts in specific settings or scenarios.
Among the many quantum technologies proposed and devised so far are quantum batteries, energy storage devices that could theoretically store energy more efficiently than classical batteries, while also charging more rapidly. Despite their predicted potential, most quantum battery solutions proposed to date have not yet proven to exhibit a genuine quantum advantage, or in other words, to perform better than their classical counterparts.
Researchers at PSL Research University and the University of Pisa recently introduced a new deceptively simple quantum battery model that could exhibit a genuine quantum advantage over a classical analog battery. The new model, outlined in a paper published in Physical Review Letters, was found to successfully reach the so-called quantum speed limit, the maximum speed that a quantum system could theoretically achieve.
When a drummer hits a drum, the surface vibrates and creates sound—a signal we recognize as music. But once those vibrations stop, the signal disappears. Now imagine a drumhead that’s incredibly thin, only about 10 millimeters wide, and covered in tiny triangular holes. Scientists have created exactly that, and it does something extraordinary.
Researchers at the Niels Bohr Institute in Copenhagen, working with teams from the University of Konstanz and ETH Zurich, discovered that vibrations can travel through this miniature membrane with barely any energy loss. In fact, the vibrations move more cleanly than signals in even the most advanced electronic circuits. This breakthrough, recently published in Nature, opens up new possibilities for how we transmit sound and information, especially in the race toward powerful new quantum technologies.
Phonons – Sound Signals or Vibrations That Spread Through a Solid Material.
In a hunt for more sustainable technologies, researchers are looking further into enabling two-dimensional materials in renewable energy that could lead to sustainable production of chemicals such as ammonia, which is used in fertilizer.
This next generation of low-dimensional materials, called MXenes, catalyzes the production of air into ammonia for foods and transportation for high-efficiency energy fertilizers.
MXenes has a wide range of possibilities that allow for highly flexible chemical compositions, offering significant control over their properties.
New research utilizing data from NASA’s Parker Solar Probe has provided the first direct evidence of a phenomenon known as the “helicity barrier” in the solar wind. This discovery, published in Physical Review X by Queen Mary University of London researchers, offers a significant step toward understanding two long-standing mysteries: how the sun’s atmosphere is heated to millions of degrees and how the supersonic solar wind is generated.
The solar atmosphere, or corona, is far hotter than the sun’s surface, a paradox that has puzzled scientists for decades. Furthermore, the constant outflow of plasma and magnetic fields from the sun, known as the solar wind, is accelerated to incredible speeds.
Turbulent dissipation —the process by which mechanical energy is converted into heat—is believed to play a crucial role in both these phenomena. However, in the near-sun environment, where plasma is largely collisionless, the exact mechanisms of this dissipation have remained elusive.