Toggle light / dark theme

Our machines will be smart enough and eventually we will through intelligence enhancement.


For over a century, Einstein’s theories have been the bedrock of modern physics, shaping our understanding of the universe and reality itself. But what if everything we thought we knew was just the surface of a much deeper truth? In February 2025, at Google’s high-security Quantum A-I Campus in Santa Barbara, a team of scientists gathered around their latest creation — a quantum processor named Willow. What happened next would leave even Neil deGrasse Tyson, one of the world’s most renowned astrophysicists, in tears. This is the story of how a cutting-edge quantum chip opened a door that many thought would remain forever closed, challenging our most fundamental beliefs about the nature of reality. This is a story you do not want to miss.

Researchers have achieved a major quantum computing breakthrough: certified randomness, a process where a quantum computer generates truly random numbers, which are then proven to be genuinely random by classical supercomputers. This innovation has deep implications for cryptography, fairness, an

Jacob Barandes, physicist and philosopher of science at Harvard University, talks about realism vs. anti-realism, Humeanism, primitivism, quantum physics, Hilbert spaces, quantum decoherence, measurement problem, Wigner’s Friend thought experiment, philosophy of physics, the quantum-stochastic correspondence and indivisible stochastic processes.

Jacob: https://www.jacobbarandes.com/

SUPPORT:
Patreon: / knowtime.
Anchor: https://anchor.fm/knowtime/support.
Youtube Membership: / @knowtime.

PODCAST:
Anchor: https://anchor.fm/knowtime.
Spotify: https://open.spotify.com/show/2CjRJPktODLDeHavCNDLGA
Apple Podcasts: https://podcasts.apple.com/us/podcast/know-time/id1535371851?uo=4

CONNECT:
Instagram: https://www.instagram.com/knowtimetofly/
Instagram (Personal): https://www.instagram.com/shalajlawania/
Twitter: https://twitter.com/knowtimetofly.
Twitter (Personal): https://twitter.com/shalajlawania.
Facebook: https://www.facebook.com/knowtimetofly.
Blog: http://www.sadisticshalpy.com/

Hosted & produced by: shalaj lawania.

Quantum computers have recently demonstrated an intriguing form of self-analysis: the ability to detect properties of their own quantum state—specifically, their entanglement— without collapsing the wave function (Entangled in self-discovery: Quantum computers analyze their own entanglement | ScienceDaily) (Quantum Computers Self-Analyze Entanglement With Novel Algorithm). In other words, a quantum system can perform a kind of introspection by measuring global entanglement nonlocally, preserving its coherent state. This development has been likened to a “journey of self-discovery” for quantum machines (Entangled in self-discovery: Quantum computers analyze their own entanglement | ScienceDaily), inviting comparisons to the self-monitoring and internal awareness associated with human consciousness.

How might a quantum system’s capacity for self-measurement relate to models of functional consciousness?

Key features of consciousness—like the integration of information from many parts, internal self-monitoring of states, and adaptive decision-making—find intriguing parallels in quantum phenomena like entanglement, superposition, and observer-dependent measurement.

Superconductivity is a quantum phenomenon, observed in some materials, that entails the ability to conduct electricity with no resistance below a critical temperature. Over the past few years, physicists and material scientists have been trying to identify materials exhibiting this property (i.e., superconductors), while also gathering new insights about its underlying physical processes.

Superconductors can be broadly divided into two categories: conventional and unconventional superconductors. In conventional superconductors, (i.e., Cooper pairs) form due to phonon-mediated interactions, resulting in a superconducting gap that follows an isotropic s-wave symmetry. On the other hand, in , this gap can present nodes (i.e., points at which the superconducting gap vanishes), producing a d-wave or multi-gap symmetry.

Researchers at the University of Tokyo recently carried out a study aimed at better understanding the previously observed in a rare-earth intermetallic compound, called PrTi2Al20, which is known to arise from a multipolar-ordered state. Their findings, published in Nature Communications, suggest that there is a connection between quadrupolar interactions and in this material.

If one side of a conducting or semiconducting material is heated while the other remains cool, charge carriers move from the hot side to the cold side, generating an electrical voltage known as thermopower.

Past studies have shown that the produced in clean two-dimensional (2D) electron systems (i.e., materials with few impurities in which electrons can only move in 2D), is directly proportional to the entropy (i.e., the degree of randomness) per charge carrier.

The link between thermopower and entropy could be leveraged to probe exotic quantum phases of matter. One of these phases is the fractional quantum Hall (FQH) effect, which is known to arise when electrons in these materials are subject to a strong perpendicular magnetic field at very low temperatures.

This Quantum Computer Simulates the Hidden Forces That Shape Our Universe

The study of elementary particles and forces is of central importance to our understanding of the universe. Now a team of physicists from the University of Innsbruck and the Institute for Quantum Computing (IQC) at the University of Waterloo show how an unconventional type of quantum computer opens a new door to the world of elementary particles.

Credit: Kindea Labs

The quantum computing landscape has witnessed a revolutionary breakthrough from . Researchers at the University of Science and of China in Hefei have developed a quantum processor that claims to be 1 quadrillion times faster than the world’s most powerful supercomputers. This technological marvel, named Zuchongzhi 3.0, represents a significant leap in quantum computing capabilities and establishes China as a formidable player in the quantum race.

The Zuchongzhi 3.0 processor boasts an impressive 105 qubits, the fundamental units of quantum computing. This represents a substantial upgrade from its predecessor, which contained only 66 qubits. The new processor utilizes transmon qubits, which are specifically designed to minimize sensitivity to external disturbances, thereby enhancing computational stability.

In benchmark tests published in Physical Review Letters on March 3, 2025, the Chinese quantum processor demonstrated performance that was approximately 1 million times faster than Google’s Sycamore chip on specific sampling tasks. This extraordinary speed differential highlights the exponential advantage that quantum processors hold over conventional computing systems for certain operations.