Toggle light / dark theme

CU Denver Develops Quantum Tool that May Lead to Gamma-Ray Lasers and Access the Multiverse

Sahai has found a way to create extreme electromagnetic fields never before possible in a laboratory. These electromagnetic fields—created when electrons in materials vibrate and bounce at incredibly high speeds—power everything from computer chips to super particle colliders that search for evidence of dark matter. Until now, creating fields strong enough for advanced experiments has required huge, expensive facilities.

For example, scientists chasing evidence of dark matter use machines like the Large Hadron Collider at CERN, the European Organization for Nuclear Research, in Switzerland. To accommodate the radiofrequency cavities and superconducting magnets needed for accelerating high energy beams, the collider is 16.7 miles long. Running experiments at that scale demands huge resources, is incredibly expensive, and can be highly volatile.

Sahai developed a silicon-based, chip-like material that can withstand high-energy particle beams, manage the energy flow, and allow scientists to access electromagnetic fields created by the oscillations, or vibrations, of the quantum electron gas—all in a space about the size of your thumb.

The rapid movement creates the electromagnetic fields. With Sahai’s technique, the material manages the heat flow generated by the oscillation and keeps the sample intact and stable. This gives scientists a way to see activity like never before and opens the possibility of shrinking miles-long colliders into a chip.


A University of Colorado Denver engineer is on the cusp of giving scientists a new tool that can help them turn sci-fi into reality.

Imagine a safe gamma ray laser that could eradicate cancer cells without damaging healthy tissue. Or a tool that could help determine if Stephen Hawking’s multiverse theory is real by revealing the fabric underlying the universe.

New scheme mitigates self-discharging in quantum batteries

Quantum batteries (QBs) are energy storage devices that could serve as an alternative to classical batteries, potentially charging faster and enabling the extraction of more energy. In contrast with existing batteries, these batteries leverage effects rooted in quantum mechanics, such as entanglement and superposition.

Despite their promise, QBs have not yet reached optimal performances, partly because they are prone to decoherence simultaneously. This is a loss of coherence (i.e., the ability of quantum systems to exist in a superposition of multiple states), prompted by interactions between a system and its surrounding environment.

Decoherence causes QBs to self-discharge, or in other words, to spontaneously start releasing the energy they are storing. This self-discharging process has so far prevented the batteries’ practical application.

Demonstration of first antimatter quantum bit paves way for improved comparisons of matter and antimatter

In a breakthrough for antimatter research, the BASE collaboration at CERN has kept an antiproton—the antimatter counterpart of a proton—oscillating smoothly between two different quantum states for almost a minute while trapped. The achievement, reported in a paper published today in the journal Nature, marks the first demonstration of an antimatter quantum bit, or qubit, and paves the way for substantially improved comparisons between the behavior of matter and antimatter.

Researchers demonstrate modular approach for building scalable quantum computers

What do children’s building blocks and quantum computing have in common? The answer is modularity.

It is difficult for scientists to build quantum computers monolithically—that is, as a single large unit. Quantum computing relies on the manipulation of millions of information units called qubits, but these qubits are difficult to assemble. The solution? Finding modular ways to construct quantum computers. Like plastic children’s bricks that lock together to create larger, more intricate structures, scientists can build smaller, higher-quality modules and string them together to form a comprehensive system.

Recognizing the potential of these modular systems, researchers from The Grainger College of Engineering at the University of Illinois Urbana-Champaign have presented an enhanced approach to scalable quantum computing by demonstrating a viable and high-performance modular architecture for superconducting quantum processors.

Quantum tool could lead to gamma-ray lasers and access the multiverse

A University of Colorado Denver engineer is on the cusp of giving scientists a new tool that can help them turn sci-fi into reality.

Imagine a safe gamma ray laser that could eradicate cancer cells without damaging healthy tissue. Or a tool that could help determine if Stephen Hawking’s multiverse theory is real by revealing the fabric underlying the universe.

Assistant Professor of Electrical Engineering Aakash Sahai, Ph.D., has developed a quantum breakthrough that could help those sci-fi ideas develop and has sent a ripple of excitement through the quantum community because of its potential to revolutionize our understanding of physics, chemistry, and medicine.

Optical frequency comb integration transforms absolute distance measurement precision

The Korea Research Institute of Standards and Science has successfully developed a length measurement system that achieves a level of precision approaching the theoretical limit allowed by quantum physics.

The system boasts world-leading measurement accuracy while maintaining a compact and robust design suitable for field deployment, making it a strong candidate to serve as the new benchmark for next-generation length metrology. The work is published in the journal Laser & Photonics Reviews.

Currently, the most precise instruments for measuring length are national length measurement standards, which define the unit of one meter. These instruments, operated by leading national metrology institutes including KRISS, utilize interferometers based on single-wavelength lasers to perform ultra-precise length measurements.