Blog

Archive for the ‘nuclear energy’ category

Oct 26, 2024

An Efficient Way to Optimize Laser-Driven Nuclear Fusion

Posted by in categories: information science, nuclear energy

In 2022, a nuclear-fusion experiment yielded more energy than was delivered by the lasers that ignited the fusion reaction (see Viewpoint: Nuclear-Fusion Reaction Beats Breakeven). That demonstration was an example of indirect-drive inertial-confinement fusion, in which lasers collapse a fuel pellet by heating a gold can that surrounds it. This approach is less efficient than heating the pellet directly since the pellet absorbs less of the lasers’ energy. Nevertheless, it has been favored by researchers at the largest laser facilities because it is less sensitive to nonuniform laser illumination. Now Duncan Barlow at the University of Bordeaux, France, and his colleagues have devised an efficient way to improve illumination uniformity in direct-drive inertial-confinement fusion [1]. This advance helps overcome a remaining barrier to high-yield direct-drive fusion using existing facilities.

Triggering self-sustaining fusion by inertial confinement requires pressures and temperatures that are achievable only if the fuel pellet implodes with high uniformity. Such uniformity can be prevented by heterogeneities in the laser illumination and in the way the beams interact with the resulting plasma. Usually, researchers identify the laser configuration that minimizes these heterogeneities by iterating radiation-hydrodynamics simulations that are computationally expensive and labor intensive. Barlow and his colleagues developed an automatic, algorithmic approach that bypasses the need for such iterative simulations by approximating some of the beam–plasma interactions.

Compared with an experiment using a spherical, plastic target at the National Ignition Facility in California, the team’s optimization method should deliver an implosion that reaches 2 times the density and 3 times the pressure. But the approach can also be applied to other pellet geometries and at other facilities.

Oct 26, 2024

For heating plasma in fusion devices, researchers unravel how electrons respond to neutral beam injection

Posted by in categories: nuclear energy, particle physics

Heating a plasma for fusion research requires megawatts of power. One approach that research tokamaks use to achieve the necessary power input is neutral beam injection (NBI). With NBI, fast neutral particles are generated in a device called a beam source and then injected into the plasma.

Oct 26, 2024

Ghost Particles on Patrol: Antimatter Detector Revolutionizes Nuclear Reactor Monitoring

Posted by in categories: military, nuclear energy, particle physics

Researchers have developed a new detector that analyzes antineutrinos emitted by nuclear reactors to monitor their activities from great distances.

This technology, which utilizes the phenomena of Cherenkov radiation, could revolutionize how we ensure reactors are not producing material for nuclear weapons, despite challenges from other environmental antineutrinos.

Nuclear Fission and Antimatter Monitoring.

Oct 25, 2024

US nuclear fusion lab hits 200,000 plasma ‘shots’ in a milestone

Posted by in categories: nuclear energy, particle physics

A cornerstone of the US fusion research program, the DIII-D National Fusion Facility, has accomplished a major achievement. The nuclear fusion facility has completed its 200,000th experimental cycle.

“While completing 200,000 shots is impressive in its own right, this achievement is far more than a mere number,” said Dr Richard Buttery, Director of the DIII-D National Fusion Facility.

Nuclear fusion has long been hailed as the “holy grail” of clean energy. It is the process of nuclear fusion itself that powers the sun and stars. Unlike nuclear fission, which splits atoms and generates radioactive waste, fusion involves combining lighter atoms to form heavier ones.

Oct 24, 2024

US power grid added battery equivalent of 20 nuclear reactors in past four years

Posted by in categories: nuclear energy, sustainability

Pace of growth helps maintain renewable energy when weather conditions interfere with wind and solar.

Oct 24, 2024

Tracking down nuclear fission’s elusive scission neutron with a supercomputer

Posted by in categories: biotech/medical, nuclear energy, supercomputing

Nuclear fission—when the nucleus of an atom splits in two, releasing energy—may seem like a process that is fully understood. First discovered in 1939 and thoroughly studied ever since, fission is a constant factor in modern life, used in everything from nuclear medicine to power-generating nuclear reactors. However, it is a force of nature that still contains mysteries yet to be solved.

Researchers from the University of Washington, Seattle, or UW, and Los Alamos National Laboratory have used the Summit supercomputer at the Department of Energy’s Oak Ridge National Laboratory to answer one of fission’s biggest questions: What exactly happens during the nucleus’s “neck rupture” as it splits in two?

The resulting paper is published in the journal Physical Review Letters.

Oct 22, 2024

Nuclear fusion energy requires heat- and radiation-resilient materials to be reliable, says nuclear engineer

Posted by in categories: materials, nuclear energy

Fusion energy has the potential to be an effective clean energy source, as its reactions generate incredibly large amounts of energy. Fusion reactors aim to reproduce on Earth what happens in the core of the sun, where very light elements merge and release energy in the process. Engineers can harness this energy to heat water and generate electricity through a steam turbine, but the path to fusion isn’t completely straightforward.

Oct 21, 2024

Google orders small modular nuclear reactors for its data centres

Posted by in categories: computing, nuclear energy

Tech group signs deal with Kairos Power to build up to 7 small facilities to meet its energy needs.

Oct 20, 2024

Google Pivots to Nuclear Reactors to Power Its Artificial Intelligence

Posted by in categories: climatology, nuclear energy, robotics/AI

Google on Monday signed a deal to get electricity from small nuclear reactors to help power artificial intelligence.

The agreement to buy energy from reactors built by Kairos Power came just weeks after word that Three Mile Island, the site of America’s worst nuclear accident, will restart operations to provide energy to Microsoft.

“We believe that nuclear energy has a critical role to play in supporting our clean growth and helping to deliver on the progress of AI,” Google senior director of energy and climate said during a briefing.

Oct 19, 2024

Space Force funds $35M institute for versatile propulsion at U-M

Posted by in categories: chemistry, nuclear energy, solar power, space travel, sustainability

This sounds very promising! The researchers are investigating the use of nuclear microreactors to power faster and more efficient electric propulsion systems.☢️🚀


To develop spacecraft that can “maneuver without regret,” the U.S. Space Force is providing $35 million to a national research team led by the University of Michigan. It will be the first to bring fast chemical rockets together with efficient electric propulsion powered by a nuclear microreactor.

The newly formed Space Power and Propulsion for Agility, Responsiveness and Resilience Institute involves eight universities, and 14 industry partners and advisers in one of the nation’s largest efforts to advance space power and propulsion, a critical need for national defense and space exploration.

Continue reading “Space Force funds $35M institute for versatile propulsion at U-M” »

Page 1 of 13312345678Last