Toggle light / dark theme

New research shows somatic mutations drive epigenetic changes tied to aging. This discovery reshapes our understanding of aging and challenges current anti-aging strategies.


Summary: A new study has uncovered a direct link between somatic mutations and epigenetic modifications, challenging established views on aging. Researchers found that random genetic mutations drive predictable changes in DNA methylation, offering new insights into the relationship between mutation accumulation and epigenetic clocks.

This suggests that epigenetic changes may track, rather than cause, aging, making it harder to reverse aging than previously thought. These findings redefine our understanding of aging at the molecular level and hold significant implications for future anti-aging therapies.

Researchers at University of California San Diego School of Medicine have published results that shed new light on an old question: what causes aging at the molecular level? Their findings, published in Nature Aging, describe a never-before-seen link between the two most accepted explanations: random genetic mutations and predictable epigenetic modifications. The latter, also known as the epigenetic clock theory, has been widely used by scientists as a consistent, quantitative measure of biological aging.

However, the new research suggests that the process may not be so simple.

“Major research institutions and companies are betting on turning back the epigenetic clock as a strategy to reverse the effects of aging, but our research suggests that this may only be treating a symptom of aging, not the underlying cause,” said co-corresponding author Trey Ideker, Ph.D., a professor at UC San Diego School of Medicine and UC San Diego Jacobs School of Engineering.

Cardiovascular disease continues to lead as the primary cause of death across the globe, taking millions of lives every year. Damage caused by these diseases is particularly difficult to repair, since the heart has minimal ability to regenerate itself. But what if we could reprogram the body’s own cells to restore damaged tissue?

This question has been tackled by scientists at Korea University, led by Dr. Myeong-Hwa Song. The team has unveiled an innovative technique to convert fibroblasts—common connective tissue cells—into mature and functional induced cardiomyocytes (iCMs). Their method relies on combining fibroblast growth factor 4 (FGF4) with vitamin C, a pairing that accelerates cell maturation and enhances function.

“Our findings bring us closer to transforming regenerative medicine into practical therapies,” says Dr. Song, who is based at Korea University’s Department of Cardiology and in Seoul, South Korea. “This research takes an important step toward using a patient’s own cells to repair their heart.”

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

OpenAI says it trained a new AI model called GPT-4b micro with Retro Biosciences, a longevity science startup trying to extend the human lifespan by 10 years, according to the MIT Technology Review.

Retro, which is backed by Sam Altman, has been working with OpenAI for roughly a year on this research, according to the report. The GPT-4b micro model tries to re-engineer proteins — a specific set called the Yamanaka factors — that can turn human skin cells into young-seeming stem cells. Retro believes these proteins are a promising step toward building human organs and providing supplies of replacement cells.

The model differs slightly from Google’s Nobel prize-winning AlphaFold, which predicts the shape of proteins, but it appears to be OpenAI’s first model that is custom-built for biological research. OpenAI and Retro tell the MIT Technology Review they plan to release research on the model and its outputs.

Summary: A new study has identified three psychological profiles that influence brain health, cognitive decline, and dementia risk in aging adults. Profiles with high protective traits, like purpose and openness, show better cognition and brain integrity, while those with low protective traits or high negative traits face accelerated brain atrophy and mental health issues.

Researchers emphasize comprehensive psychological assessments to tailor interventions, like therapies that enhance life purpose or reduce distress symptoms. These findings pave the way for personalized strategies to prevent cognitive decline and support brain health in adulthood and aging.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

+ Decoding the secrets of DNA, CRISPR gene editing allows scientists to target specific genes linked to aging. By modifying these genes, researchers aim to prevent conditions that come with aging. Envision a future where genetic risks for age-related diseases are minimized through precise DNA editing.

It is possible to regenerate cells using stem cells, which can turn into a variety of types. In recent trials, stem cells showed promise in regenerating aged tissues like cartilage. Scientists hope to develop therapies that might slow down physical decline and maintain vitality longer by using this potential.

Nanobots could someday be the future of healthcare by targeting damaged cells directly as they move through your bloodstream. Researchers are currently exploring how nanobots might repair cellular damage and improve overall health, potentially reversing some age-related effects at the cellular level.

As the protective ends of chromosomes, telomeres shorten over time. When they become too short, cells stop functioning. In laboratory studies, researchers have extended the lifespan of animals by using telomere extension techniques. Though still experimental, this research could pave the way for human applications in slowing aging.


Patients suffering from diseased and injured organs are often treated with transplanted organs, and this treatment has been in use for over 50 years. In 1955, the kidney became the first entire organ to be replaced in a human, when Murray transplanted this organ between identical twins. Several years later, Murray performed an allogeneic kidney transplant from a non-genetically identical patient into another. This transplant, which overcame the immunologic barrier, marked a new era in medicine and opened the door for use of transplantation as a means of therapy for different organ systems.

As modern medicine increases the human lifespan, the aging population grows, and the need for donor organs grows with it, because aging organs are generally more prone to failure. However, there is now a critical shortage of donor organs, and many patients in need of organs will die while waiting for transplants. In addition, even if an organ becomes available, rejection of organs is still a major problem in transplant patients despite improvements in the methods used for immunosuppression following the transplant procedure. Even if rejection does not occur, the need for lifelong use of immunosuppressive medications leads to a number of complications in these patients.

These problems have led physicians and scientists to look to new fields for alternatives to organ transplantation. In the 1960s, a natural evolution occurred in which researchers began to combine new devices and materials sciences with cell biology, and a new field that is now termed tissue engineering was born. As more scientists from different fields came together with the common goal of tissue replacement, the field of tissue engineering became more formally established. Tissue engineering is now defined as an interdisciplinary field which applies the principles of engineering and life sciences towards the development of biological substitutes that aim to maintain, restore or improve tissue function.