Toggle light / dark theme

Polarization is a key parameter in light–matter interactions and is consequently closely linked to light manipulation, detection, and analysis. Terahertz (THz) waves, characterized by their broad bandwidth and long wavelength, pose significant challenges to efficient polarization control with existing technologies. Here, we leverage the mesoscale wavelength characteristics of THz waves and employ a mirror-coupled total internal reflection structure to mechanically modulate the phase difference between p-and s-waves by up to 289°. By incorporating a liquid crystal phase shifter to provide adaptive phase compensation, dispersion is eliminated across a broad bandwidth. We demonstrate active switching of orthogonal linear polarizations and handedness-selective quarter-wave conversions in the 1.6–3.4 THz range, achieving an average degree of linear/circular polarization exceeding 0.996. Furthermore, arbitrary polarization at any center frequency is achieved with a fractional bandwidth exceeding 90%. This customizable-bandwidth and multifunctional device offers an accurate and universal polarization control solution for various THz systems, paving the way for numerous polarization-sensitive applications.

Programmable photonic latch memory https://opg.optica.org/oe/fulltext.cfm?uri=oe-33-2-3501&id=567359


Researchers have unveiled a programmable photonic latch that speeds up data storage and processing in optical systems, offering a significant advancement over traditional electronic memory by reducing latency and energy use.

Fast, versatile volatile photonic memory could enhance AI, sensing, and other computationally intense applications.

Programmable Photonic Latch Technology

Start building on Together AI at https://www.together.ai/berman and for a limited time unlock free access to Llama 3.2 and FLUX schnell model endpoints.

Join My Newsletter for Regular AI Updates 👇🏼
https://forwardfuture.ai.

My Links 🔗
👉🏻 Subscribe: / @matthew_berman.
👉🏻 Twitter: / matthewberman.
👉🏻 Discord: / discord.
👉🏻 Patreon: / matthewberman.
👉🏻 Instagram: / matthewberman_ai.
👉🏻 Threads: https://www.threads.net/@matthewberma
👉🏻 LinkedIn: / forward-future-ai.

Media/Sponsorship Inquiries ✅

TVA has selected the BWRX-300 SMR for potential deployment at the Clinch River Site near Oak Ridge, Tennessee. If the funding is approved, TVA plans to accelerate construction of the first SMR, with commercial operations planned for 2033.

“Nuclear power has a key role to play in reaching a cleaner and more secure energy future,” said Scott Strazik, CEO, GE Vernova.

“Funding from this grant would play a critical role in the path forward, and we look forward to working with TVA and this strong team of utility and supply chain partners to accelerate the roll-out of small modular reactors in the United States.”

Understanding how people perceive and interpret uncertainty from large language models (LLMs) is crucial, as users often overestimate LLM accuracy, especially with default explanations. Steyvers et al. show that aligning LLM explanations with their internal confidence improves user perception.

The magnitude 7.9 Bonin Islands earthquake sequence in May 2015, which ruptured deep within the earth near the base of the upper mantle, did not include an aftershock that extended to record depths into the lower mantle, according to a study appearing in The Seismic Record.

When Hao Zhang of the University of Southern California and colleagues re-examined the aftershock sequence of the earthquake, they did not find evidence for a 751-kilometer-deep aftershock as reported by previous researchers. This aftershock has been called the deepest earthquake ever recorded.

Instead, their study found a distribution of aftershocks that is compatible with a 12-kilometer sliver of a mantle mineral called olivine that could shed light on how deep earthquakes can occur.