Toggle light / dark theme

In today’s AI news, Google launched its much-anticipated new flagship AI model, Gemini 2.0 Pro Experimental, on Wednesday. The announcement was part of a series of other AI model releases. The company is also making its reasoning model, Gemini 2.0 Flash Thinking, available in the Gemini app.

In other advancements, LinkedIn is testing a new job-hunting tool that uses a custom large language model to comb through huge quantities of data to help people find prospective roles. The company believes that artificial intelligence will help users unearth new roles they might have missed in the typical search process.

S Deep Research feature, which can autonomously browse the web and create research reports. ‘ + s up from hitting $50 million ARR, or the yearly value of last month s case for why they are the best positioned to take over TikTok And, in this episode, a16z Partner Marc Andrusko chats with Mastercard’s Chief AI and Data Officer Greg Ulrich about Mastercard’s long history of using AI, the opportunities (and potential risks) associated with integrating generative AI into fraud detection, determining what tech to employ based on use cases, and the best advice he’s ever gotten.

Then, power your AI transformation with an insightful keynote from Scott Guthrie, Executive Vice President, Cloud + AI Group at Microsoft, and other industry experts. Watch this keynote presentation from NYC stop on Microsoft’s AI Tour.

We close out with this insightful discussion with Malcolm Gladwell and Ric Lewis, SVP of Infrastructure at IBM. Learn how hardware capabilities enable the matrix math behind large language models and how AI is transforming industries—from banking to your local coffee shop.

Three months after its launch from NASA’s Kennedy Space Center in Florida, the agency’s Europa Clipper has another 1.6 billion miles (2.6 billion kilometers) to go before it reaches Jupiter’s orbit in 2030 to take close-up images of the icy moon Europa with science cameras.

Meanwhile, a set of cameras serving a different purpose is snapping photos in the space between Earth and Jupiter. Called star trackers, the two imagers look for stars and use them like a compass to help mission controllers know the exact orientation of the spacecraft—information critical for pointing telecommunications antennas toward Earth and sending data back and forth smoothly.

In early December, the pair of star trackers (formally known as the stellar reference units) captured and transmitted Europa Clipper’s first imagery of space. The picture, composed of three shots, shows tiny pinpricks of light from stars 150 to 300 light-years away. The starfield represents only about 0.1% of the full sky around the spacecraft, but by mapping the stars in just that small slice of sky, the orbiter is able to determine where it is pointed and orient itself correctly.

The authors present an approach to simultaneously map local magnetization, strain, atomic structure at nanoscale. It provides direct visualization of strainmagnetic coupling in ferromagnetic materials, opening avenues for studying nanomagnetism.

SPHEREx could, though (in a way).

To be fair, SPHEREx won’t rival the JWST’s ability to observe highly localized regions of the universe that are confined to the infrared section of the electromagnetic spectrum. However, unlike the JWST, it is an all-sky survey. Whereas the $10 billion JWST is great at observing things like specific nebulas and relatively narrow but tremendously dimensional deep fields, SPHEREx is intended to image the entire sky as seen from Earth.

“We are literally mapping the entire celestial sky in 102 infrared colors for the first time in humanity’s history, and we will see that every six months,” said Nicky Fox, associate administrator for NASA’s Science Mission Directorate. “This has not been done before on this level of color resolution for our old sky maps.”

Summary: New research highlights a functional hierarchy in the brain’s processing of space and time. In posterior areas, like the occipital cortex, space and time are tightly linked and processed by the same neurons.

In anterior regions, such as the frontal cortex, space and time are processed independently, with distinct neural populations forming “time maps” for specific durations. Intermediate regions, like the parietal cortex, display mixed processing mechanisms, bridging spatial and temporal integration.

This study offers fresh insights into how the brain integrates two fundamental dimensions of human experience and reveals the unique coding strategies across cortical regions.

Scientists have developed ‘entanglement microscopy,’ a technique that maps quantum entanglement at a microscopic level.

By studying the deep connections between particles, researchers can now visualize the hidden structures of quantum matter, offering new perspectives on particle interaction that could revolutionize technology and our understanding of the universe.

Quantum entanglement is a fascinating phenomenon where particles remain mysteriously linked, even when separated by vast distances. Understanding how this connection works, especially in complex quantum systems, has been a long-standing challenge in physics.

Quantum entanglement—a phenomenon where particles are mysteriously linked no matter how far apart they are—presents a long-standing challenge in the physical world, particularly in understanding its behavior within complex quantum systems.

A research team from the Department of Physics at The University of Hong Kong (HKU) and their collaborators have recently developed a novel algorithm in quantum physics known as ‘entanglement microscopy’ that enables visualization and mapping of this extraordinary phenomenon at a microscopic scale.

By zooming in on the intricate interactions of entangled particles, one can uncover the hidden structures of quantum matter, revealing insights that could transform technology and deepen the understanding of the universe.

Summary: A new study has identified three psychological profiles that influence brain health, cognitive decline, and dementia risk in aging adults. Profiles with high protective traits, like purpose and openness, show better cognition and brain integrity, while those with low protective traits or high negative traits face accelerated brain atrophy and mental health issues.

Researchers emphasize comprehensive psychological assessments to tailor interventions, like therapies that enhance life purpose or reduce distress symptoms. These findings pave the way for personalized strategies to prevent cognitive decline and support brain health in adulthood and aging.

Summary: A comprehensive study mapped neuronal IL-1R1 (nIL-1R1) expression in the mouse brain, highlighting its role in sensory processing, mood, and memory regulation. Researchers found that neurons expressing IL-1R1 integrate immune and neural signals, revealing connections between inflammation and brain disorders like depression and anxiety.

The study pinpointed key regions, such as the somatosensory cortex and hippocampus, where IL-1 signaling influences synapse organization and neural circuit modulation. Notably, neuronal IL-1R1 modifies synaptic pathways without triggering inflammation, suggesting distinct functions in the central nervous system.