Toggle light / dark theme

Protein MCL1 links cancer cell survival and energy metabolism

A study by the Mildred Scheel Early Career Center group led by Dr. Mohamed Elgendy at the TUD Faculty of Medicine provides fundamental insights into cancer biology. Published in Nature Communications, the study shows for the first time that the protein MCL1 not only inhibits programmed cell death, but also plays a central role in tumor metabolism.

The researchers have succeeded in tracing two classic hallmarks of cancer—the evasion of apoptosis (a form of programmed cell death) and the dysregulation of energy metabolism—back to a common molecular mechanism.

The study focuses on the protein MCL1, which is strongly overexpressed in many tumor types and has previously been considered primarily an anti-apoptotic factor of the Bcl-2 protein family.

How an antiviral defense mechanism may lead to Alzheimer’s disease

One of the main proteins that contributes to Alzheimer’s disease is called phospho-tau (p-tau). When p-tau gets too many phosphate groups attached to it (a process called hyperphosphorylation), it starts to stick together and form clumps called “tangles” inside of brain nerve cells.

A new study by Mass General Brigham investigators shows that tau hyperphosphorylation may be a consequence of an antiviral response that protects the brain from infection. Results are published in Nature Neuroscience.

“As a geneticist, I always wondered why humans had evolved gene mutations predisposing to Alzheimer’s disease,” said senior author Rudolph Tanzi, Ph.D., Director of the McCance Center for Brain Health and Genetics and Aging Research Unit in the Mass General Brigham Department of Neurology.

Inflammation fuels one of the most aggressive forms of lung cancer

Small cell lung cancer (SCLC) is one of the most aggressive forms of lung cancer, with a five-year survival rate of only 5%. Despite this poor prognosis, SCLC is initially highly responsive to chemotherapy. However, patients typically relapse and experience very rapid disease progression. Current research into the biological mechanisms behind SCLC remains essential in order to prolong treatment responses, overcome relapse and, ultimately, improve long-term patient outcomes.

A research team led by Professor Dr. Silvia von Karstedt (Translational Genomics, CECAD Cluster of Excellence on Aging Research, and Center for Molecular Medicine Cologne—CMMC) has discovered a novel mechanism used by this type of cancer that helps explain its aggressive nature. The study titled “Lack of Caspase 8 Directs Neuronal Progenitor-like reprogramming and Small Cell Lung Cancer Progression” is published in Nature Communications.

Promising new superconducting material discovered with the help of AI

Tohoku University and Fujitsu Limited have successfully used AI to derive new insights into the superconductivity mechanism of a new superconducting material.

Their findings demonstrate an important use case for AI technology in new materials development and suggest that the technology has the potential to accelerate research and development. This could drive innovation in various industries such as the environment and energy, drug discovery and health care, and electronic devices.

The AI technology was used to automatically clarify causal relationships from measurement data obtained at NanoTerasu Synchrotron Light Source. This achievement was published in Scientific Reports.

Signature neural patterns may help predict recovery from traumatic brain injury

After traumatic brain injury (TBI), some patients may recover completely, while others retain severe disabilities. Accurately evaluating prognosis is challenging in patients on life-sustaining therapy.

Though resting-state functional MRI (rs-fMRI) can assess neurological activity shortly after brain injury, it is unknown whether communication across brain regions at this early juncture predicts long-term recovery.

Gut bacteria may play role in bipolar depression by directly influencing brain connectivity

Bipolar disorder (BD) is a psychiatric disorder characterized by extreme mood changes. Individuals diagnosed with BD typically alternate between periods of high energy, euphoria, irritability and/or impulsivity (i.e., manic episodes) and others marked by feelings of sadness, low energy, and hopelessness (i.e., depression).

While there are now several medications that can help patients to manage the disorder and stabilize their mood, many of these drugs have side effects and dosages often need to be periodically adjusted. Recent studies suggest that the bacteria and microorganisms living in the digestive system, also known as gut microbiota, play a key role in mental health and might also contribute to some symptoms of BD.

Researchers at Zhejiang University, the Nanhu Brain-Computer Interface Institute and other institutes recently carried out a study investigating the possible connection between gut microbiota and the depressive episodes experienced by people diagnosed with BD. Their findings, published in Molecular Psychiatry, suggest that the microorganisms in the digestive system can directly influence connections between specific brain regions known to be affected by BD depression.

Alzheimer’s Paper Retracted; Lipoic Acid and MS; Botched Autism Drug Rollout

Science Signaling retracted a 2017 paper that linked a specific amyloid form (amyloid-beta 56) to tau pathology after an investigation into allegations of data manipulation. Author Sylvain Lesné, PhD, who resigned from the University of Minnesota earlier this year, objected to the retraction.

Older adults who were awake more during the night performed worse on cognitive tests no matter how long they slept, data from the Einstein Aging Study showed. (Sleep Health)

Human herpesvirus 7 could be a contributing factor in multiple sclerosis (MS) etiology, a case-control study in Sweden suggested. (Brain Communications)


— News and commentary from the world of neurology and neuroscience.

Professor of Medicine Says Death Appears to Be Reversible

A near-death experience expert insists that one’s heart stopping doesn’t have to be the end, with current medical interventions that can help patients cheat death.

In an interview with The Telegraph, associate professor of medicine at New York University’s Langone Medical Center Sam Parnia insisted that by and large, the medical industry is still very behind on the concepts of death and dying.

According to Parnia, studies from the last five years — including some undertaken by his own eponymous lab at NYU — have suggested that our brains remain “salvageable for not only hours, but possibly days” after death.

Back from the brink: programmed cell revival for regeneration

Yay:3 death can be reversed at a cellular level and then regenerate it back to health.


Therefore, in this issue of The EMBO Journal, Dhar et al sought to improve our understanding of the key molecular mechanisms that regulate the reversal of cell death and apply this knowledge to tissue repair (Dhar et al, 2025). In their study, the authors used a sublethal dose of the lysosomotropic agent L-Leucyl-L-leucine methyl ester (LLOMe) to induce apoptotic cell death (Johansson et al, 2010) in mouse embryonic fibroblasts (MEFs) and characterize the cell revival process. At the initial stage following LLOMe treatment, cells detach from the growth surface and display an apoptotic phenotype, suggesting they are undergoing cell death. However, at later stages, most of the floating cells reattach and regain their typical morphology, with a reduction in the activation of cell death molecules (Fig. 1A). These results indicate that cells can recover from the brink of cell death in response to LLOMe. This phenomenon occurs in multiple non-immune cell types, including primary MEFs and cardiac fibroblasts, as well as several cell lines from hamsters, mice, and humans (Dhar et al, 2025).

At the organellar level, shortly after treatment with LLOMe, microtubules, mitochondria, Golgi, and the endoplasmic reticulum are fragmented; however, these structures progressively recover within 2–3 h and return to near-normal morphology by 16 h post-treatment. Additionally, reviving cells display dramatic changes in endosomes, autophagosomes, and lysosomes, including the formation of abnormally large EEA1-positive early endosomes, LC3-positive autophagosomes, and Rab7/lysotracker-positive acidic vacuoles resembling multivesicular bodies. These large acidic compartments are enzymatically active and frequently surrounded by mitochondrial networks during revival, suggesting a role for metabolic support in driving the recovery.

Advancing Computers to Think Like Humans: Neuromorphic Meshing Explained

#neuromorphic #computing #futuretech


By Chuck Brooks, Skytop Contributor / December 3, 2025

Chuck Brooks serves as President and Consultant of Brooks Consulting International. Chuck also serves as an Adjunct Professor at Georgetown University in the Cyber Risk Management Program, where he teaches graduate courses on risk management, homeland security, and cybersecurity.

Chuck has received numerous global accolades for his work and promotion of cybersecurity. Recently, he was named the top cybersecurity expert to follow on social media, and also as one top cybersecurity leaders for 2024. He has also been named “Cybersecurity Person of the Year” by Cyber Express, Cybersecurity Marketer of the Year, and a “Top 5 Tech Person to Follow” by LinkedIn” where he has 120,000 followers on his profile.

As a thought leader, blogger, and event speaker, he has briefed the G20 on energy cybersecurity, The US Embassy to the Holy See, and the Vatican on global cybersecurity cooperation. He has served on two National Academy of Science Advisory groups, including one on digitalizing the USAF, and another on securing BioTech. He has also addressed USTRANSCOM on cybersecurity and serves on an industry/government Working group for DHS CISA focused on security space systems.

/* */