The report highlights breakthroughs in AI, connectivity, and sustainability, such as deep learning, reconfigurable intelligent surfaces, and engineered organisms to combat climate change.
Category: climatology
What types of new plastics can be developed with enhanced recycling capabilities? This is what a recent study published in Nature hopes to address as a team of researchers at Cornell University have developed an enhanced type of thermoset, which is built from a type of polymer that is often difficult to recycle, resulting in it being put back into the atmosphere from burning it or into landfills, which destroy marine ecosystems. This study has the potential to help scientists, engineers, policymakers, and the public better understand new recycling methods that can be used to both help the environment and mitigate the impacts of climate change.
For the study, the researchers used a bio-sourced material known as dihydrofuran (DHF) to design and build a new thermoset polymer that maintains its robustness while ensuring safely being recycled through heat and environmental degradation. When compared to traditional thermosets, the DHF thermosets can still be used for a myriad of commercial applications, including footwear, electronics, and garden hoses, just to name a few.
“We’ve spent 100 years trying to make polymers that last forever, and we’ve realized that’s not actually a good thing,” said Dr. Brett Fors, who is a professor of physical chemistry at Cornell University and a co-author on the study. “Now we’re making polymers that don’t last forever, that can environmentally degrade.”
A new climate modeling study published in the journal Science Advances by researchers from the IBS Center for Climate Physics (ICCP) at Pusan National University in South Korea presents a new scenario of how climate and life on our planet would change in response to a potential future strike of a medium-sized (~500 m) asteroid.
The solar system is full of objects with near-Earth orbits. Most of them do not pose any threat to Earth, but some of them have been identified as objects of interest with non-negligible collision probabilities. Among them is the asteroid Bennu with a diameter of about 500 m, which—according to recent studies—has an estimated chance of 1 in 2700 of colliding with Earth in September 2182. This is similar to the probability of flipping a coin 11 times in a row with the same outcome.
To determine the potential impacts of an asteroid strike on our climate system and on terrestrial plants and plankton in the ocean, researchers from the ICCP set out to simulate an idealized collision scenario with a medium-sized asteroid using a state-of-the-art climate model.
Last month was the world’s warmest January on record and raised further questions about the pace of climate change, scientists say.
January 2025 had been expected to be slightly cooler than January 2024 because of a shift away from a natural weather pattern in the Pacific known as El Niño.
But instead, last month broke the January 2024 record by nearly 0.1C, according to the European Copernicus climate service.
Scientists hope a mix of artificial intelligence and human expertise will help decipher ancient scrolls carbonized by a volcanic eruption 2,000 years ago.
Hundreds of papyrus scrolls were found in the 1750s amid the remains of a lavish villa at the Roman town of Herculaneum, which along with neighboring Pompeii was destroyed when Mt. Vesuvius erupted in A.D. 79.
The library of what’s called the Villa of the Papyri has the potential to add immeasurably to knowledge of ancient thought if the scrolls, which have been rolled up into the size of a candy bar, could be read.
Did Mars have lakes and rivers during a single period or over separate periods? This is what a recent study published in Nature Geoscience hopes to address as an international team of researchers investigated whether Mars experienced a single event of liquid water on its surface, or many events spread over millions of years. This study has the potential to help scientists better understand the early conditions on Mars and whether these conditions were suitable to support life as we know it.
“Early Mars is a lost world, but it can be reconstructed in great detail if we ask the right questions,” said Dr. Robin Wordsworth, who is a Gordon McKay Professor of Environmental Science and Engineering at Harvard University and a co-author on the study. “This study synthesizes atmospheric chemistry and climate for the first time, to make some striking new predictions – which are testable once we bring Mars rocks back to Earth.”
For the study, the researchers used a series of computer models to simulate how the atmosphere on Mars billions of years ago potentially reacted to surface water-rock interactions and climate changes over time. The goal was to ascertain whether Mars experienced a single event of liquid water on its surface, or a series of events spread over millions of years with periods of dryness in between them.
A melting ice patch in the Rocky Mountains uncovered an ancient forest, and these trees have stories to tell about dynamic landscapes and climate change.
Read about the volcano that some believe almost wiped humans off the planet.
Researchers have discovered two sets of ancient wave ripples on Mars, signatures of long-dried bodies of water preserved in the rock record. Wave ripples are small undulations in the sandy shores of lakebeds, created as wind-driven water laps back and forth. The two sets of ripples indicate the former presence of shallow water that was open to the Martian air, not covered by ice as some climate models would require.
Ripples are one of the clearest indicators of an ancient standing body of water that can be provided by the geologic record. The team estimates that the ripples formed around 3.7 billion years ago, indicating that the Martian atmosphere and climate must have been warm and dense enough to support liquid water open to the air at the time.
The research is described in a paper appearing in the journal Science Advances. Caltech’s John Grotzinger, Harold Brown Professor of Geology, and Michael Lamb, professor of geology, are principal investigators on the study.
Trees need a certain number of warm days in their growing seasons to grow properly; otherwise, the cell walls of new growth don’t lignify properly, creating blue rings that appear when wood samples are dyed.
Since trees and shrubs can live for hundreds of years, identifying these blue rings allows us to spot cold summers in the past. By looking at pine trees and juniper shrubs from northern Norway, scientists identified two extremely cold summers in 1902 and 1877, possibly caused by the eruptions of Mount Pelée on the island of Martinique and Cotopaxi in Ecuador.
“Blue rings look like unfinished growth rings, and are associated with cold conditions during the growing season,” said Dr. Agata Buchwal of Adam Mickiewicz University, Poland, lead author of the article in Frontiers in Plant Science.