Toggle light / dark theme

Mars’ Gravity Helps Shape Earth’s Ice Age Cycles

“I knew Mars had some effect on Earth, but I assumed it was tiny,” said Dr. Stephen Kane.


How does Mars influence Earth’s climate cycles? This is what a recent study published in the Publications of the Astronomical Society of the Pacific hopes to address as a trio of researchers from the United States, United Kingdom, and Australia investigated how the gravitational interactions between Earth and Mars help alter the former’s climate evolution. This study has the potential to help scientists better understand how external processes influence planetary habitability and what this could mean for finding life beyond Earth.

For the study, the researchers used a series of computer models to simulate Earth Milankovitch cycles, which are changes in Earth’s eccentricity (orbit shape), obliquity (axial tilt), and precession (axial wobble) over hundreds of thousands of years. Specifically, the researchers aspired to ascertain how gravitational interactions with Mars could influence these cycles, including climate evolution like ice ages.

In the end, the researchers found that Mars not only influences Earth’s orbital patterns and behavior, but that the solar system’s architecture influences each other’s orbital patterns, and this could have implications for searching for Earth-like exoplanets. This comes despite Mars being approximately half the size of Earth.

This is how I’m preparing for AI (and you can too)

As AI replaces traditional wage labor, individuals should prepare for an automated future by adapting their skills, investments, and lifestyle to focus on economic stability, personal growth, and self-directed living ## ## Questions to inspire discussion.

Capital Economy Participation.

A: Invest in dividend-producing ETFs for a hands-off approach to wealth building, as AI and robotics reduce labor demand and shift wealth distribution toward capital ownership rather than wages.

🏢 Q: What ownership structures should I explore beyond traditional employment?

A: Consider Employee Stock Ownership Plans (ESOPs) to become a part-owner of companies, but approach Decentralized Autonomous Organizations (DAOs) cautiously due to their high-risk nature despite offering ownership opportunities.

⚠️ Q: Should I rely on Bitcoin for income generation?

NASA Rover Detects Electric Sparks in Mars Dust Devils, Storms

Perseverance confirmed a long-suspected phenomenon in which electrical discharges and their associated shock waves can be born within Red Planet mini-twisters.

NASA’s Perseverance Mars rover has recorded the sounds of electrical discharges —sparks — and mini-sonic booms in dust devils on Mars. Long theorized, the phenomenon has now been confirmed through audio and electromagnetic recordings captured by the rover’s SuperCam microphone. The discovery, published Nov. 26 in the journal Nature, has implications for Martian atmospheric chemistry, climate, and habitability, and could help inform the design of future robotic and human missions to Mars.

A frequent occurrence on the Red Planet, dust devils form from rising and rotating columns of warm air. Air near the planet’s surface becomes heated by contact with the warmer ground and rises through the denser, cooler air above. As other air moves along the surface to take the place of the rising warmer air, it begins to rotate. When the incoming air rises into the column, it picks up speed like spinning ice skaters bringing their arms closer to their body. The air rushing in also picks up dust, and a dust devil is born.

El Niño and La Niña synchronize global droughts and floods, study finds

Water extremes such as droughts and floods have a huge impact on communities, ecosystems, and economies. Researchers with The University of Texas at Austin have turned their attention to tracking these extremes across Earth and have discovered what is driving them.

In a recent study published in AGU Advances, the researchers found that over the past two decades ENSO, a climate pattern in the equatorial Pacific Ocean that includes El Niño and La Niña, has been the dominant driver of total water storage extremes at the global level. What’s more, the researchers found that ENSO has a synchronizing effect on water storage extremes across continents.

Study co-author Bridget Scanlon, a research professor at the Bureau of Economic Geology at the UT Jackson School of Geosciences, said that understanding how extremes unfold across the world has humanitarian and policy impacts.

Tiny Mars’s big impact on Earth’s climate: How the red planet’s pull shapes ice ages

At half the size of Earth and one-tenth its mass, Mars is a featherweight as far as planets go. Yet new research reveals the extent to which Mars is quietly tugging on Earth’s orbit and shaping the cycles that drive long-term climate patterns here, including ice ages.

The study is published in the journal Publications of the Astronomical Society of the Pacific.

Stephen Kane, a professor of planetary astrophysics at UC Riverside, began this project with doubts about recent studies tying Earth’s ancient climate patterns to gravitational nudges from Mars. These studies suggest that sediment layers on the ocean floor reflect climate cycles influenced by the red planet despite its distance from Earth and small size.

Antarctica in 2025: Drivers of deep uncertainty in projected ice loss

Antarctic ice plays a crucial role in regulating Earth’s climate, global sea levels, ocean circulation, and planetary reflectivity.

Learn more in this Science Review.


Antarctica is a vital component of Earth’s climate system, influencing global sea level, ocean circulation, and planetary albedo. Major knowledge gaps in critical processes—spanning the atmosphere, ocean, ice sheets, underlying beds, ice shelves, and sea ice—create uncertainties in future projections, hindering climate adaptation and risk assessments of ice intervention strategies. Antarctica’s ice sheet could contribute 28 centimeters to sea level by 2100, and potentially more if we surpass warming thresholds that trigger instabilities and rapid retreat. We review recent advances in understanding the changing stability of the ice sheet margins and identify key processes that require further research. Progress requires high-resolution satellite data, targeted field campaigns, improved modeling, and refined theory.

Artificial photosynthesis catalyst converts carbon dioxide into fuel using sunlight

A joint research team has developed a highly efficient photocatalyst that can convert carbon dioxide into the high-value-added fuel, methane, using sunlight, while explaining its operating principles. The work is published in the journal ACS Catalysis.

Carbon dioxide is a typical greenhouse gas, considered a major cause of climate change, and developing technologies to effectively reduce it is an important challenge worldwide.

The photocatalyst technology that caught the interest of the research team is a type of artificial photosynthesis technology that uses solar energy to convert carbon dioxide into fuel. It has garnered significant attention for its potential to contribute to carbon neutrality and eco-friendly energy production.

Advances in thin-film electrolytes push solid oxide fuel cells forward

Under the threat of climate change and geopolitical tensions related to fossil fuels, the world faces an urgent need to find sustainable and renewable energy solutions. While wind, solar, and hydroelectric power are key renewable energy sources, their output strongly depends on environmental conditions, meaning they are unable to provide a stable electricity supply for modern grids.

Solid oxide fuel cells (SOFCs), on the other hand, represent a promising alternative; these devices produce electricity on demand directly from clean electrochemical reactions involving hydrogen and oxygen.

However, existing SOFC designs still face technical limitations that hinder their widespread adoption for power generation. SOFCs typically rely on bulk ceramic electrolytes and require high operating temperatures, ranging from 600–1,000 °C. This excessive heat not only forces manufacturers to use expensive, high-performance materials, but also leads to earlier component degradation, limiting the cell’s service life and driving up costs.

North Pacific winter storm tracks shifting poleward much faster than predicted

Alaska’s glaciers are melting at an accelerating pace, losing roughly 60 billion tons of ice each year. About 4,000 kilometers to the south, in California and Nevada, records for heat and dryness are being shattered, creating favorable conditions for wildfire events.

One major factor contributing to climate change in both regions is the northward shift of winter storm tracks across the North Pacific Ocean. These storms transport heat and moisture from Earth’s warmer regions toward the pole; when their tracks shift northward, more heat and moisture reach Alaska, while natural ventilation of the southwestern United States is reduced, driving temperatures upward.

In a new study published in Nature, Dr. Rei Chemke of the Weizmann Institute of Science’s Earth and Planetary Sciences Department and Dr. Janni Yuval of Google Research show that the storms’ northward shift is occurring much faster than climate models have predicted. Moreover, using a new metric based on sea-level pressure—a parameter measured consistently for decades—the researchers found that this shift is not part of natural climate variability but rather a clear consequence of climate change.

Emergent Complexity

“milliards” means “billions” btw.

Here is Emergent Garden’s thoughts on emergent complexity. I go through a tour of simple systems that produce unexpected complexity, and try to break down emergence into more general and useful ideas. We talk about snowflakes and ant colonies, cellular automata and universe simulations, and the many weird ideas of Stephen Wolfram. I also offer some advice for creating and encouraging emergent behavior. This video is important to me. Emergence is the most interesting thing in the universe.

~SUPPORT ME~
Scrimba: https://scrimba.com/?via=EmergentGarden.
Patreon: https://www.patreon.com/emergentgarden.
Ko-fi: https://ko-fi.com/emergentgarden.
Twitter: https://twitter.com/max_romana.
Bluesky: https://bsky.app/profile/emergentgarden.bsky.social.

~SOURCES~
Particle Life: https://sandbox-science.com/particle-life.
Universe Sandbox: https://universesandbox.com/
Lego Galaxy: https://www.youtube.com/watch?v=djLyoDmSPF0
Big Bang: https://svs.gsfc.nasa.gov/12656/
Emergence Animation: https://www.pexels.com/video/an-artist-s-illustration-of-art…-25744130/
Ants Solving Maze: https://www.reddit.com/r/Damnthatsinteresting/comments/1hlyv…_maneuver/
Neuron Footage: https://www.youtube.com/watch?v=2TIK9oXc5Wo.
Snowflake Footage: https://www.youtube.com/watch?v=q-PQk2-Po-g.
The Life Engine: https://thelifeengine.net.
Water Molecule Sim: https://twitter.com/EdgarGonzalezGT/status/1877078173910753452
Langton’s Ant Simulator: https://evolvecode.io/turmites/index.html.
Conway’s Game of Life: https://playgameoflife.com/
Recursive Game of Life: https://oimo.io/works/life/
A New Kind of Science: https://www.wolframscience.com/nks/
Stephen Wolfram Podcasts: https://www.youtube.com/watch?v=PdE-waSx-d8&list=PLdwvZsAHiS…9ChTYxtZsD
Complexity, A Guided Tour: https://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitche…atfound-20
Wolfram Hypergraph Simulator: https://met4citizen.github.io/Hypergraph/
Atom Orbital Simulation: https://www.falstad.com/qmatom/
Lego Bonsai Alternate Build: https://www.youtube.com/watch?v=YnuCOrCJojw.
Lego Blocks Made of Legos:
Tornado: https://www.youtube.com/watch?v=LGcGFU_Hi9U
Carl Sagan’s Cosmos: https://archive.org/details/cosmos_1980/COSMOS_01.mp4.
Terry Davis Quote: https://www.youtube.com/watch?v=k0qmkQGqpM8

My Music Guy: https://youtube.com/@acolyte-compositions?si=2P97LlROhNgQYOa
“Deliberate Thought“
Kevin MacLeod (incompetech.com)
Licensed under Creative Commons: By Attribution 3.0
http://creativecommons.org/licenses/by/3.0/

~TIMESTAMPS~

/* */