Toggle light / dark theme

Real-time view inside microreactor reveals 2D semiconductor growth secrets

As the miniaturization of silicon-based semiconductor devices approaches fundamental physical limits, the electronics industry faces an urgent need for alternative materials that can deliver higher integration and lower power consumption. Two-dimensional (2D) semiconductors, which are only a single atom thick, have emerged as promising candidates due to their unique electronic and optical properties. However, despite intense research interest, controlling the growth of high-quality 2D semiconductor crystals has remained a major scientific and technological challenge.

A research team led by Research Associate Professor Hiroo Suzuki from the Department of Electrical and Communication Engineering at Okayama University, Japan, together with Dr. Kaoru Hisama from Shinshu University and Dr. Shun Fujii from Keio University, has now overcome a key barrier by directly observing how these materials grow at the atomic scale. Using an advanced in situ observation system, the researchers captured real-time images of monolayer transition metal dichalcogenides (TMDCs) forming inside a micro-confined reaction space. The study was published on December 12, 2025, in the journal Advanced Science.

The work builds on earlier success by the team in synthesizing large-area monolayer TMDC single crystals using a substrate-stacked microreactor. While that method consistently produced high-quality materials, the mechanisms governing crystal growth inside the confined space were poorly understood.

Long-period Jupiter-like exoplanet discovered with TESS

Using NASA’s Transiting Exoplanet Survey Satellite (TESS), an international team of astronomers has discovered a new extrasolar planet transiting a distant star. The newfound alien world, designated TOI-6692 b, is the size of Jupiter and has an orbital period of about 130 days. The discovery was presented in a paper published January 22 on the arXiv pre-print server.

TESS is conducting a survey of about 200,000 bright stars near the sun with the aim of searching for transiting exoplanets. To date, more than 7,800 potential planets (known as TESS Objects of Interest) have been cataloged using this satellite, with 733 of those discoveries officially verified.

Real-time single-event position detection using high-radiation-tolerance GaN

Silicon semiconductors are widely used as particle detectors; however, their long-term operation is constrained by performance degradation in high-radiation environments. Researchers at University of Tsukuba have demonstrated real-time, two-dimensional position detection of individual charged particles using a gallium nitride (GaN) semiconductor with superior radiation tolerance.

Silicon (Si)-based devices are widely used in electrical and electronic applications; however, prolonged exposure to high radiation doses leads to performance degradation, malfunction, and eventual failure. These limitations create a strong demand for alternative semiconductor materials capable of operating reliably in harsh environments, including high-energy accelerator experiments, nuclear-reactor containment systems, and long-duration lunar or deep-space missions.

Wide-bandgap semiconductors, characterized by strong atomic bonding, offer the radiation tolerance required under such conditions. Among these materials, gallium nitride (GaN)—commonly employed in blue light-emitting diodes and high-frequency, high-power electronic devices—has not previously been demonstrated in detectors capable of two-dimensional particle-position sensing for particle and nuclear physics applications.

Scientists discover hidden geometry that bends electrons like gravity

Researchers have discovered a hidden quantum geometry inside materials that subtly steers electrons, echoing how gravity warps light in space. Once thought to exist only on paper, this effect has now been observed experimentally in a popular quantum material. The finding reveals a new way to understand and control how materials conduct electricity and interact with light. It could help power future ultra-fast electronics and quantum technologies.

Introduction: John Martinis

New cadets. New era. Infinite possibilities. Catch a new episode of Star Trek: Starfleet Academy every Thursday starting Jan. 15th on Paramount+.

Can quantum tunneling occur at macroscopic scales? Neil deGrasse Tyson and comedian Chuck Nice sit down with John Martinis, UCSB physicist and 2025 Nobel Prize winner in Physics, to explore superconductivity, quantum tunneling, and what this means for the future of quantum computing.

What exactly is macroscopic quantum tunneling, and why did it take decades for its importance to be recognized? We’ve had electrical circuits forever, so what did Martinis discover that no one else saw? If quantum mechanics usually governs tiny particles, why does a superconducting circuit obey the same rules? And what does superconductivity really mean at a quantum level?

How can a system cross an energy barrier it doesn’t have the energy to overcome? What is actually tunneling in a superconducting wire, and what does it mean to tunnel out of superconductivity? We break down Josephson Junctions, Cooper pairs, and other superconducting lingo. Does tunneling happen instantly, or does it take time? And what does that say about wavefunction collapse and our assumptions about instantaneous quantum effects?

Learn what a qubit is and why macroscopic quantum effects are important for quantum computing. Why don’t quantum computers instantly break all encryption? How close are we to that reality, and what replaces today’s cryptography when it happens? Is quantum supremacy a scientific milestone, a geopolitical signal, or both? Plus, we take cosmic queries from our audience: should quantum computing be regulated like nuclear energy? Will qubits ever be stable enough for everyday use? Will quantum computers live in your pocket or on the dark side of the Moon? Can quantum computing supercharge AI, accelerate discovery, or even simulate reality itself? And finally: if we live in a simulation, would it have to be quantum all the way down?

Thanks to our Patrons Fran Rew, Shawn Martin, Kyland Holmes, Samantha McCarroll-Hyne, camille wilson, Bryan, Sammi, Denis Alberti, Csharp111, stephanie woods, Mark Claassen, Joan Tarshis, Abby Powell, Zachary Koelling, JWC, Reese, Fran Ochoa, Bert Berrevoets, Barely A Float Farm, Vasant Shankarling, Michael Rodriguez, DiDTim, Ian Cochrane, Brendan, William Heissenberg Ⅲ, Carl Poole, Ryan McGee, Sean Fullard, Our Story Series, dennis van halderen, Ann Svenson, mi ti, Lawrence Cottone, 123, Patrick Avelino, Daniel Arvay, Bert ten Kate, Kristian Rahbek, Robert Wade, Raul Contreras, Thomas Pring, John, S S, SKiTz0721, Joey, Merhawi Gherezghier, Curtis Lee Zeitelhack, Linda Morris, Samantha Conte, Troy Nethery, Russ Hill, Kathy Woida, Milimber, Nathan Craver, Taylor Anderson, Deland Steedman, Emily Lennox, Daniel Lopez,., DanPeth, Gary, Tony Springer, Kathryn Rhind, jMartin, Isabella Troy Brazoban, Kevin Hobstetter, Linda Pepper, 1701cara, Isaac H, Jonathan Morton, JP, טל אחיטוב Tal Achituv, J. Andrew Medina, Erin Wasser, Evelina Airapetova, Salim Taleb, Logan Sinnett, Catherine Omeara, Andrew Shaw, Lee Senseman, Peter Mattingly, Nick Nordberg, Sam Giffin, LOWERCASEGUY, JoricGaming, Jeffrey Botkin, Ronald Hutchison, and suzie2shoez for supporting us this week.

From Latent Manifolds to Targeted Molecular Probes: An Interpretable, Kinome-Scale Generative Machine Learning Framework for Family-Based Kinase Ligand Design

Newlypublished by gennady verkhivker, et al.

🔍 Key findings: Novel generative framework integrates ChemVAE-based latent space modeling with chemically interpretable structural similarity metric (Kinase Likelihood Score) and Bayesian optimization for SRC kinase ligand design, demonstrating kinase scaffolds spanning 37 protein kinase families spontaneously organize into low-dimensional manifold with chemically distinct carboxyl groups revealing degeneracy in scaffold encoding — local sampling successfully converts scaffolds from other kinase families into novel SRC-like chemotypes accounting for ~40% of high-similarity cutoffs.

Read now ➡️


Scaffold-aware artificial intelligence (AI) models enable systematic exploration of chemical space conditioned on protein-interacting ligands, yet the representational principles governing their behavior remain poorly understood. The computational representation of structurally complex kinase small molecules remains a formidable challenge due to the high conservation of ATP active site architecture across the kinome and the topological complexity of structural scaffolds in current generative AI frameworks. In this study, we present a diagnostic, modular and chemistry-first generative framework for design of targeted SRC kinase ligands by integrating ChemVAE-based latent space modeling, a chemically interpretable structural similarity metric (Kinase Likelihood Score), Bayesian optimization, and cluster-guided local neighborhood sampling.

Paragon: Space-Charge-Neutralized Reflective Electron Projection Lithography

This is best exemplified by the RCA Permanent-Magnet Electron Microscope, based on the work of John H. Reisner and collaborators.

“The permanent magnet as an energizing source for magnetic electron lenses is not new. The use of a permanent magnetic yoke for the comparatively coarse focusing of cathode-ray tubes has long been known. The advantages of permanent magnet lens energization are very appealing — excellent stability (beyond the ability of any regulator), no heating losses in energizing coils, no need for extensive current supplies and regulators — advantages which heretofore were limited to electrostatic lenses.”

The Paragon idea is that “die at once” exposure is the key to high-volume manufacturing with electron projection lithography. Anything that would “reduce system throughput and/or require registration of plural exposures” is forbidden.

Puzzling slow radio pulses are coming from space. A new study could finally explain them

Cosmic radio pulses repeating every few minutes or hours, known as long-period transients, have puzzled astronomers since their discovery in 2022. Our new study, published in Nature Astronomy today, might finally add some clarity.

Radio astronomers are very familiar with pulsars, a type of rapidly rotating neutron star. To us watching the skies from Earth, these objects appear to pulse because powerful radio beams from their poles sweep our telescopes—much like a cosmic lighthouse.

The slowest pulsars rotate in just a few seconds—this is known as their period. But in recent years, long-period transients have been discovered as well. These have periods from 18 minutes to more than six hours.

/* */