Toggle light / dark theme

Quantum Breakthrough Unlocks Potential of “Miracle Material” for Future Electronics

Graphene is a remarkable “miracle” material, consisting of a single, atom-thin layer of tightly connected carbon atoms that remains both stable and highly conductive. These qualities make it valuable for many technologies, including flexible screens, sensitive detectors, high-performance batteries, and advanced solar cells.

A new study, carried out by the University of Göttingen in collaboration with teams in Braunschweig and Bremen in Germany, as well as Fribourg in Switzerland, shows that graphene may be even more versatile than previously believed.

For the first time, researchers have directly identified “Floquet effects” in graphene. This finding settles a long-running question: Floquet engineering – an approach that uses precise light pulses to adjust a material’s properties – can also be applied to metallic and semi-metallic quantum materials like graphene. The work appears in Nature Physics.

Google’s plan for space-based computing

The sun produces more power than 100 trillion times humanity’s entire electricity generation. In orbit, solar panels can be eight times more productive than their Earth-bound counterparts, generating energy almost continuously without the need for heavy battery storage. These facts have led a team of Google researchers to ask what if the best place to scale artificial intelligence isn’t on Earth at all, but in space?

Project Suncatcher, Google’s latest space mission, envisions constellations of solar-powered satellites equipped with processors and connected by laser-based optical links. The concept tackles one of AI’s most pressing challenges, the enormous energy demands of large-scale machine learning systems, by tapping directly into the solar system’s ultimate power source. A new research paper published by Google describes their progress toward addressing the technical challenges.

The proposed system would operate in a sun-synchronous low Earth orbit, where satellites remain in almost constant sunlight. This orbital choice maximizes solar energy collection while minimizing battery requirements. However, making space-based AI infrastructure viable requires solving several formidable engineering challenges.

New lightweight polymer film can prevent corrosion

MIT researchers have developed a lightweight polymer film that is nearly impenetrable to gas molecules, raising the possibility that it could be used as a protective coating to prevent solar cells and other infrastructure from corrosion, and to slow the aging of packaged food and medicines.

The polymer, which can be applied as a film mere nanometers thick, completely repels nitrogen and other gases, as far as can be detected by laboratory equipment, the researchers found. That degree of impermeability has never been seen before in any polymer, and rivals the impermeability of molecularly-thin crystalline materials such as graphene.

“Our polymer is quite unusual. It’s obviously produced from a solution-phase polymerization reaction, but the product behaves like graphene, which is gas-impermeable because it’s a perfect crystal. However, when you examine this material, one would never confuse it with a perfect crystal,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT.

Research drives commercialization of energy-efficient solar cell technology toward 40% efficiency milestone

Third-generation solar cell technology is advancing rapidly. An engineering research team at The Hong Kong Polytechnic University (PolyU) has achieved a breakthrough in the field of perovskite/silicon tandem solar cells (TSCs), focusing on addressing challenges that include improving efficiency, stability and scalability.

The team has conducted a comprehensive analysis of TSC performance and provided strategic recommendations, which aim to raise the energy conversion efficiency of this new type of solar cell from the current maximum of approximately 34% to about 40%.

The team hopes to accelerate the commercialization of /silicon TSCs through industry-academia-research collaboration, while aligning with the nation’s strategic plan of carbon peaking and neutrality and promoting the development of innovative technologies such as artificial intelligence through .

Long-term stability for perovskite solar cells achieved with fluorinated barrier compound

Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art.

After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.

“We used a fluorinated compound that can slide between the perovskite and the buckyball (C60) contact layer, forming an almost compact monomolecular film,” explains Abate. These Teflon-like molecular layer chemically isolate the perovskite layer from the contact layer, resulting in fewer defects and losses. Additionally, the intermediate layer increases the structural stability of both adjacent layers, particularly the C60 layer, making it more uniform and compact.

Exploring a space-based, scalable AI infrastructure system design

Artificial intelligence (AI) is a foundational technology that could reshape our world, driving new scientific discoveries and helping us tackle humanity’s greatest challenges. Now, we’re asking where we can go to unlock its fullest potential.

The Sun is the ultimate energy source in our solar system, emitting more power than 100 trillion times humanity’s total electricity production. In the right orbit, a solar panel can be up to 8 times more productive than on earth, and produce power nearly continuously, reducing the need for batteries. In the future, space may be the best place to scale AI compute. Working backwards from there, our new research moonshot, Project Suncatcher, envisions compact constellations of solar-powered satellites, carrying Google TPUs and connected by free-space optical links. This approach would have tremendous potential for scale, and also minimizes impact on terrestrial resources.

We’re excited about this growing area of exploration, and our early research, shared today in “Towards a future space-based, highly scalable AI infrastructure system design,” a preprint paper, which describes our progress toward tackling the foundational challenges of this ambitious endeavor — including high-bandwidth communication between satellites, orbital dynamics, and radiation effects on computing. By focusing on a modular design of smaller, interconnected satellites, we are laying the groundwork for a highly scalable, future space-based AI infrastructure.

Sunlight split in two: Organic layer promises leap in solar power efficiency

In the race to make solar energy cheaper and more efficient, a team of UNSW Sydney scientists and engineers have found a way to push past one of the biggest limits in renewable technology.

Singlet fission is a process where a single particle of light—a photon—can be split into two packets of energy, effectively doubling the electrical output when applied to technologies harnessing the sun.

In a study appearing in ACS Energy Letters, the UNSW team—known as “Omega Silicon”—showed how this works on an that could one day be mass-produced specifically for use with solar panels.

Scientists create new type of semiconductor that holds superconducting promise

Scientists have long sought to make semiconductors—vital components in computer chips and solar cells—that are also superconducting, thereby enhancing their speed and energy efficiency and enabling new quantum technologies. However, achieving superconductivity in semiconductor materials such as silicon and germanium has proved challenging due to difficulty in maintaining an optimal atomic structure with the desired conduction behavior.

In a paper published in the journal Nature Nanotechnology, an international team of scientists reports producing a form of that is superconducting—able to conduct electricity with , which allows currents to flow indefinitely without , resulting in greater operational speed that requires less energy.

“Establishing superconductivity in germanium, which is already widely used in computer chips and , can potentially revolutionize scores of consumer products and industrial technologies,” says New York University physicist Javad Shabani, director of NYU’s Center of Quantum Information Physics and the university’s newly established Quantum Institute, one of the paper’s authors.

Molecular engineering strategy boosts efficiency of inverted perovskite solar cells

Solar cells, devices that can directly convert radiation emitted from the sun into electricity, have become increasingly widespread and are contributing to the reduction of greenhouse gas emissions worldwide. While existing silicon-based solar cells have attained good performances, energy engineers have been exploring alternative designs that could be more efficient and affordable.

Perovskites, a class of materials with a characteristic crystal structure, have proved to be particularly promising for the development of low-cost and energy-efficient solar energy solutions. Recent studies specifically highlighted the potential of inverted perovskite solar cells, devices in which the extraction charge layers are arranged in the reverse order compared to traditional designs.

Inverted perovskite solar cells could be more stable and easier to manufacture on a large-scale than conventional perovskite-based cells. Nonetheless, most inverted cells developed so far were found to exhibit low energy-efficiencies, due to the uncontrolled formation of crystal grains that can produce defects and adversely impact the transport of charge carriers generated by sunlight.

Ultra-black nanoneedles absorb 99.5% of light for future solar towers

Using state-of-the-art equipment, researchers in the Thermophysical Properties of Materials group from the University of the Basque Country (EHU) have analyzed the capacity of ultra-black copper cobaltate nanoneedles to effectively absorb solar energy. They showed that the new nanoneedles have excellent thermal and optical properties and are particularly suited to absorbing energy. This will pave the way toward concentrated solar power in the field of renewable energies.

The tests were carried out in a specialized lab that has the capacity to undertake high temperature research. The results were published in the journal Solar Energy Materials and Solar Cells.

Renewable energy of the future is concentrated solar power because it can be easily used to store thermal energy. Despite the fact that, historically, it is more expensive and complex than photovoltaic power, in recent years huge advances have taken place in this technology, and concentrated plants are spreading across more and more countries as a resource for a sustainable future.

/* */