Toggle light / dark theme

Digital transformation is blurring the lines between the physical, digital and biological spheres. From cloud computing, to Artificial Intelligence (AI) and Big Data, technologies of the Fourth Industrial Revolution (4IR) are shaping every aspect of our lives.

In the oil and gas industry, digital transformation is revolutionizing how we supply energy to the world. By deploying a range of 4IR technologies across our business, we aim to meet the world’s energy needs while enhancing productivity, reducing CO2 emissions, and creating next-generation products and materials.

MIT CSAIL researchers developed “linear oscillatory state-space models” to leverage harmonic oscillators. Capturing the stability and efficiency of biological neural systems and translating these principles into a machine learning framework, the LinOSS approach can help predict complex systems.

A new study uncovers how fine-tuning the interactions between two distinct network-forming species within a soft gel enables programmable control over its structure and mechanical properties. The findings reveal a powerful framework for engineering next-generation soft materials with customizable behaviors, inspired by the complexity of biological tissues.

The study, titled “Inter-Species Interactions in Dual, Fibrous Gels Enable Control of Gel Structure and Rheology,” is published in Proceedings of the National Academy of Sciences.

The study uses simulations to investigate how varying the strength and geometry of interactions between two colloidal species impacts network formation and rheological performance. By controlling separately interspecies stickiness and tendency to bundle, researchers discovered that tuning these inter-species interactions allows over whether the networks that they form remain separate, overlap, or intertwine.

From bird flocking to fish schooling, many biological systems exhibit some type of collective motion, often to improve performance and conserve energy. Compared to other swimmers, manta rays are particularly efficient, and their large aspect ratio is useful for creating large lift compared to drag. These properties make their collective motion especially relevant to complex underwater operations.

To understand how their affect their propulsion, researchers from Northwestern Polytechnical University (NPU) and the Ningbo Institute of NPU, in China, modeled the motions of groups of , which they present in Physics of Fluids.

“As underwater operation tasks become more complex and often require multiple underwater vehicles to carry out group operations, it is necessary to take inspiration from the group swimming of organisms to guide formations of underwater vehicles,” said author Pengcheng Gao. “Both the shape of manta rays and their propulsive performance are of great value for biomimicry.”

Protons are the basis of bioenergetics. The ability to move them through biological systems is essential for life. A new study in Proceedings of the National Academy of Sciences shows for the first time that proton transfer is directly influenced by the spin of electrons when measured in chiral biological environments such as proteins. In other words, proton movement in living systems is not purely chemical; it is also a quantum process involving electron spin and molecular chirality.

The quantum process directly affects the small movements of the biological environment that support . This discovery suggests that energy and information transfer in life is more controlled, selective, and potentially tunable than previously believed, bridging with biological chemistry and opening new doors for understanding life at its deepest level—and for designing technologies that can mimic or control biological processes.

The work, led by a team of researchers from the Hebrew University of Jerusalem collaborating with Prof. Ron Naaman from Weizmann Institute of Science and Prof. Nurit Ashkenasy from Ben Gurion University, reveals a surprising connection between the movement of electrons and protons in biological systems.

“Theories are like toothbrushes,” it’s sometimes said. “Everybody has their own and nobody wants to use anybody else’s.”

It’s a joke, but when it comes to the study of consciousness – the question of how we have a subjective experience of anything at all – it’s not too far from the truth.

In 2022, British neuroscientist Anil Seth and I published a review listing 22 theories based in the biology of the brain. In 2024, operating with a less restrictive scope, US public intellectual Robert Kuhn counted more than 200.

A new species of bacteria that functions like electrical wiring has recently been discovered on a brackish beach in Oregon. The species was named Candidatus Electrothrix yaqonensis in honor of the Yaquina tribe of Native Americans that once lived in and around Yaquina Bay, where the bacteria were found.

This species is a type of cable bacteria: rod-shaped microbes that are connected at both ends to one another to create a chain and which share an outer membrane, forming filaments several centimeters long. Cable bacteria are found in marine and freshwater sediments and, unusually among bacteria, are electrically conductive. This is due to their special metabolism, in which electrons generated by oxidizing sulfides in their deeper layers are sent to their surface layer, where they are received by oxygen and nitric acid.

Myofibroblasts generate fibrotic scars after spinal cord injury (SCI). This is typically regarded as an impediment to nerve regeneration. Understanding the heterogeneous characteristics of fibrotic scars might help to develop strategies for remodeling fibrotic scars after SCI. However, the composition, origin and function of fibrotic scars have been a subject of ongoing debate in the field.

A recent study led by Profs. Dai Jianwu and Zhao Yannan from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences employed a combination of lineage tracing and single-cell RNA sequencing (scRNA-seq) to demonstrate the heterogeneous distribution, source, and function of meningeal fibroblasts and perivascular fibroblasts in fibrotic scars.

Their research is published in the journal Nature Communications.

An engineered gut microbe can detoxify methylmercury, reducing the amount that passes into the brain and developing fetuses of mice fed a diet rich in fish, UCLA and UC San Diego’s Scripps Institution of Oceanography scientists have discovered.

“We envision the possibility that people could take a probiotic to offset the risk of consuming too much methylmercury, especially when pregnant,” said UCLA associate professor and director of the UCLA Goodman-Luskin Microbiome Center Elaine Hsiao, who is the senior author of a paper describing the research in the journal Cell Host & Microbe.

Mercury is a pollutant that enters water from several sources, the largest of which are human activities such as coal burning, artisanal gold mining and smelting, and wastes from consumer products. In the ocean, transforms into a toxic form called methylmercury. It also biomagnifies, meaning that methylmercury concentrations in animal tissues increase up the food chain from algae-eaters to top predators like humans.