Toggle light / dark theme

Pain-detecting nerve cells could yield new way to manage lung scarring

Researchers at the University of Calgary studying a lethal lung disease called pulmonary fibrosis have found that neurons known to help detect pain are also critical for reducing harmful lung inflammation that leads to the disease.

Pulmonary fibrosis, also called lung scarring, is uncommon but it’s hard to treat and most people die within five years of diagnosis. Research to date has focused on how the lung lining gets damaged and the body’s attempts to repair the issue. The role of neurons—a complex network of cells within the nervous system that send messages between the brain, and through the body—and the immune system has received less study.

Now a research team led by Cumming School of Medicine (CSM) physician-scientist Dr. Bryan Yipp, MD, has found specific that normally detect pain also help control inflammation during lung fibrosis.

Neuromorphic Intelligence Leverages Dynamical Systems Theory To Model Inference And Learning In Sustainable, Adaptable Systems

The pursuit of artificial intelligence increasingly focuses on replicating the efficiency and adaptability of the human brain, and a new approach, termed neuromorphic intelligence, offers a promising path forward. Marcel van Gerven from Radboud University and colleagues demonstrate how brain-inspired systems can achieve significantly greater energy efficiency than conventional digital computers. This research establishes a unifying theoretical framework, rooted in dynamical systems theory, to integrate insights from diverse fields including neuroscience, physics, and artificial intelligence. By harnessing noise as a learning resource and employing differential genetic programming, the team advances the development of truly adaptive and sustainable artificial intelligence, paving the way for emergent intelligence arising directly from physical substrates.


Researchers demonstrate that applying dynamical systems theory, a mathematical framework describing change over time, to artificial intelligence enables the creation of more sustainable and adaptable systems by harnessing noise as a learning tool and allowing intelligence to emerge from the physical properties of the system itself.

New evidence suggests brain’s opioid system helps mediate ketamine’s antidepressant effects

Researchers continue to explore how ketamine brings about fast-acting relief for people with depression. In a new experiment, scientists tested how brain activity changes under different conditions, shedding light on the complex pathways involved in the treatment response.

Hair Holds Hidden Clues to Children’s Mental Health Crisis

A strand of hair might seem like an unlikely window into a child’s psychological wellbeing, but new research from the University of Waterloo suggests that measuring stress hormones in hair samples could help identify which children with chronic illnesses are most at risk for developing serious mental health problems.

The four-year study of 244 Canadian children reveals a concerning pattern: more than two-thirds of kids living with chronic physical conditions showed persistently elevated levels of cortisol, the body’s primary stress hormone, measured through their hair. These children also displayed more symptoms of depression, anxiety, and behavioral problems compared to peers whose stress levels naturally declined over time.

/* */