Toggle light / dark theme

Cognition all the way down 2.0: neuroscience beyond neurons in the diverse intelligence era

This paper formalizes biological intelligence as search efficiency in multi-scale problem spaces, aiming to resolve epistemic deadlocks in the basal “cognition wars” unfolding in the Diverse Intelligence research program. It extends classical work on symbolic problem-solving to define a novel problem space lexicon and search efficiency metric. Construed as an operationalization of intelligence, this metric is the decimal logarithm of the ratio between the cost of a random walk and that of a biological agent. Thus, the search efficiency measures how many orders of magnitude of dissipative work an agentic policy saves relative to a maximal-entropy search strategy. Empirical models for amoeboid chemotaxis and barium-induced planarian head regeneration show that, under conservative (i.e.

Cancer tumors may protect against Alzheimer’s by cleaning out protein clumps

Cancer and Alzheimer’s are two of the most common chronic diseases associated with aging. For years, doctors have known about a curious aspect of these two conditions: people who survive cancers are significantly less likely to develop Alzheimer’s. While this link has been observed in the data for some time, the biological reasons for it have remained a mystery. Now, a new study published in the journal Cell has discovered a possible explanation.

In the Alzheimer’s brain, abnormal levels of a naturally occurring protein called amyloid-beta clump together to form plaques. The plaques disrupt communication between brain cells, eventually leading to cognitive decline and memory loss. Current medicines struggle to remove these clumps, but this new research suggests that cancer might be sending in a biological cleanup crew.

To see whether and how cancer provides this protection, researchers at the Huazhong University of Science and Technology in China used advanced mouse models of Alzheimer’s disease. They transplanted three types of tumors (lung, colon and prostate cancer) into the mice and found that the amyloid plaques in their brains shrank significantly.

Biology-based brain model matches animals in learning, enables new discovery

A new computational model of the brain based closely on its biology and physiology not only learned a simple visual category learning task exactly as well as lab animals, but even enabled the discovery of counterintuitive activity by a group of neurons that researchers working with animals to perform the same task had not noticed in their data before, says a team of scientists at Dartmouth College, MIT, and the State University of New York at Stony Brook.

Notably, the model produced these achievements without ever being trained on any data from animal experiments. Instead, it was built from scratch to faithfully represent how neurons connect into circuits and then communicate electrically and chemically across broader brain regions to produce cognition and behavior. Then, when the research team asked the model to perform the same task that they had previously performed with the animals (looking at patterns of dots and deciding which of two broader categories they fit), it produced highly similar neural activity and behavioral results, acquiring the skill with almost exactly the same erratic progress.

“It’s just producing new simulated plots of brain activity that then only afterward are being compared to the lab animals. The fact that they match up as strikingly as they do is kind of shocking,” says Richard Granger, a professor of psychological and brain sciences at Dartmouth and senior author of a new study in Nature Communications that describes the model.

Peripheral cancer attenuates amyloid pathology in Alzheimer’s disease via cystatin-c activation of TREM2

Now online! Peripheral cancer inhibits amyloid pathology and rescues cognition of Alzheimer’s disease through secretion of cystatin-c (Cyst-C), which binds amyloid oligomers and activates TREM2 in microglia and enables microglia to degrade pre-existing plaques.

Eco-Friendly Agrochemicals: Embracing Green Nanotechnology

In the pursuit of sustainable agricultural practices, researchers are increasingly turning to innovative approaches that blend technology and environmental consciousness. A recent study led by M.R. Salvadori, published in Discover Agriculture, delves into the promising world of green nanotechnology in agrochemicals. This research investigates how nanoscale materials can enhance the effectiveness of agrochemicals while minimizing their environmental footprint. The findings suggest that this novel approach may revolutionize crop protection and nutrient delivery systems.

Nanotechnology involves manipulating materials at the nanoscale, typically between 1 and 100 nanometers. At this scale, materials exhibit unique properties that differ significantly from their bulk counterparts. These properties can be harnessed to improve the delivery and efficacy of agrochemicals. For instance, nanosized fertilizers can increase the availability of nutrients to plants, enhancing growth and reducing waste. This targeted approach is essential in combating soil nutrient depletion and ensuring food security in an era of burgeoning global population.

Traditional agrochemicals often come with the burden of negative environmental impacts, including soil and water contamination. The introduction of green nanotechnology aims to address these concerns by developing more biodegradable and environmentally friendly agrochemicals. By using nanomaterials derived from natural sources, researchers hope to create a symbiotic relationship between agricultural practices and ecological health. This paradigm shift could pave the way for a new era of environmentally responsible farming.

The cerebellar components of the human language network

Colton Casto, Evelina Fedorenko & colleagues Neuron.


Casto et al. systematically examine language-responsive regions of the cerebellum with precision fMRI. They find one region that closely resembles the neocortical language network in its selectivity for language and response to linguistic manipulations. They also find three mixed-selective regions that respond to language but also to non-linguistic inputs.

Parent-Led Early Intervention in Very Preterm Infants and Executive Function at School Age: Secondary Analysis of a Randomized Clinical Trial

Enhanced developmental intervention (EDI), initiated in the neonatal intensive care unit and continued at home for 2 years, improved executive function at school age among very preterm children compared with usual care.

All executive domains assessed showed better performance with EDI, especially for design fluency. These findings support sustained neurodevelopmental benefit for Preterm children, with implications for long-term outcomes.


Question What are the long-term effects of an enhanced early intervention on the executive functions of children born preterm?

Findings In this secondary analysis of a randomized clinical trial among 80 very low-birth-weight preterm children, it was observed that parent-led early intervention improved executive function.

Meaning Early intervention may strengthen cognitive skills, such as attention, self-regulation, and problem-solving, which could improve academic, emotional, and social outcomes, highlighting the importance of early intervention for long-term developmental success.

Dietary methionine mitigates immune-mediated damage by enhancing renal clearance of cytokines

Nutritional strategy to prevent immune-mediated damage.

Excessive immune response with the inflammatory cytokine and chemokine production may lead to tissue damage.

With Yersinia pseudotuberculosis infection in mic, the researchers found that dietary methionine enhances kidney filtration and promotes urinary excretion of inflammatory cytokines during infection and protects against anorexia, wasting, blood-brain barrier dysfunction, and lethality.

Mechanistically, methionine and its metabolite S-adenosyl methionine (SAM) activate renal mTORC1 signaling, promoting renal growth and enhanced glomerular filtration function.

By improving cytokine clearance, this pathway mitigates immune-mediated damage and reveals a nutritional strategy to promote cooperative defenses. sciencenewshighlights ScienceMission https://sciencemission.com/Dietary-methionine


Troha et al. found that dietary methionine enhances kidney filtration and promotes urinary excretion of inflammatory cytokines during infection. By improving cytokine clearance, this pathway mitigates immune-mediated damage and reveals a nutritional strategy to promote cooperative defenses.

Nanoparticles That Destroy Disease Proteins Could Unlock New Treatments for Dementia and Cancer

Scientists have developed a new nanoparticle-based strategy that could dramatically expand the range of disease-causing proteins that can be targeted by modern medicine. A newly released perspective in Nature Nanotechnology describes an emerging nanoparticle-based approach designed to remove harm

/* */