Toggle light / dark theme

Brain microenvironment redefines metastatic tumor subtypes, facilitating precision oncology treatment

An interdisciplinary multi-center research team led by the LKS Faculty of Medicine (HKUMed) and Faculty of Dentistry at the University of Hong Kong has constructed the world’s largest multi-omics atlas of brain metastases. This comprehensive analysis included 1,032 brain metastasis samples from diverse primary tumors, together with 82 matched primary tumors and 20 glioblastomas (a highly malignant type of brain tumor) as controls.

The findings provide a novel framework for classifying brain metastases and establish a foundation for the development of personalized treatment strategies, advancing the field of precision oncology. This research was published in the journal Nature Communications.

A Parasite Carried by Billions Has a Secret Life Inside the Brain

A common parasite hiding in the brain turns out to be far more active and organized than anyone realized.

A team of scientists at the University of California, Riverside, has discovered that Toxoplasma gondii, a parasite estimated to infect up to one-third of the world’s population, is far more biologically complex than previously understood. Their findings, published in Nature Communications, provide new insight into how the parasite causes disease and why it has proven so difficult to eliminate with current treatments.

How Toxoplasmosis Spreads in Humans.

Cells adapt to aging by actively remodeling endoplasmic reticulum, study reveals

Improvements in public health have allowed humankind to survive to older ages than ever before, but, for many people, these added golden years are not spent in good health. Aging is a natural part of life, but it is associated with a greatly increased incidence of most chronic diseases, including various cancers, diabetes, and Alzheimer’s disease.

The laboratory of Kris Burkewitz, assistant professor of cell and developmental biology, wants to figure out if there is a way to break the links between the aging process and disease so that we can stay healthy longer, allowing us to better enjoy our later years. To accomplish this goal, the Burkewitz lab focuses on how cells organize their internal compartments, or organelles, and how organelle structures can influence cellular function, metabolism, and disease risk.

In his most recent paper, published in Nature Cell Biology, Burkewitz describes a new way by which cells adapt to the aging process: by actively remodeling the endoplasmic reticulum, one of the cell’s largest and most complex organelles. His team found that aging cells remodel their ER through a process called ER-phagy, which selectively targets specific ER subdomains for breakdown. The discovery that ER-phagy is involved in aging highlights this process as a possible drug target for age-related chronic conditions such as neurodegenerative diseases and various metabolic disease contexts.

CRISPR-Based Screen Reveals Possible Anti-Tau Mechanism

This screening platform washed cells with a broad range of retroviruses to determine which ones affect tau. In follow-up testing, the gene CUL5 was singled out as being crucial for tau degradation. Mitochondrial function was also found to be a key part of preventing tau pathology.


Using an ingenious CRISPR-based screening technique, scientists have found a protein that tags tau for degradation and is more strongly expressed in tau-resilient neurons [1].

Some neurons are more equal than others

The accumulation of tau protein fibrils in neurons is a hallmark of Alzheimer’s and several other diseases [2]. Scientists have long noticed that even in the brains of people who died of Alzheimer’s, some neurons are markedly healthier than others, suggesting that neurons differ in how they handle tau and that these differences may explain selective vulnerability in tauopathies [3].

/* */