Researchers at the University of Gothenburg have identified a small molecule, PZL-A, that restores function in the defective POLG enzyme, critical for mitochondrial DNA replication. The compound has shown promise in enhancing mitochondrial function.
A new study from Weill Cornell Medicine provides insights into how cells maintain the tiny end caps of chromosomes as they divide, a key process in keeping cells healthy. Using yeast, the researchers reveal protein interactions that could explain how the enzyme telomerase is tightly regulated to prevent cells from dividing uncontrollably or aging prematurely.
The preclinical study, published April 17 in Nucleic Acids Research, brings us closer to understanding the mechanisms behind aging and cancer.
Before cells divide, they replicate the double-stranded DNA of each chromosome. The replication machinery does a good job of copying the nucleotide sequences until it gets to the telomeres, the end caps of chromosomes that safeguard the genetic material from damage and normally shorten with aging. That’s when telomerase steps in and produces an overhang in which one DNA strand is a little longer than the other.
Time crystals are a new form of matter that repeat through time without energy. This quantum breakthrough could revolutionize technology and computing forever.
A team of Rice University researchers has developed a new way to control light interactions using a specially engineered structure called a 3D photonic-crystal cavity. Their work, published in the journal Nature Communications, lays the foundation for technologies that could enable transformative advancements in quantum computing, quantum communication and other quantum-based technologies.
“Imagine standing in a room surrounded by mirrors,” said Fuyang Tay, an alumnus of Rice’s Applied Physics Graduate Program and first author of the study. “If you shine a flashlight inside, the light will bounce back and forth, reflecting endlessly. This is similar to how an optical cavity works—a tailored structure that traps light between reflective surfaces, allowing it to bounce around in specific patterns.”
These patterns with discrete frequencies are called cavity modes, and they can be used to enhance light-matter interactions, making them potentially useful in quantum information processing, developing high-precision lasers and sensors and building better photonic circuits and fiber-optic networks. Optical cavities can be difficult to build, so the most widely used ones have simpler, unidimensional structures.
An evolutionary algorithmic phase transition 2.6 billion years ago may have sparked the emergence of eukaryotic cells
Posted in biological, cosmology, evolution, genetics, information science | Leave a Comment on An evolutionary algorithmic phase transition 2.6 billion years ago may have sparked the emergence of eukaryotic cells
An international collaboration between four scientists from Mainz, Valencia, Madrid, and Zurich has published new research in the Proceedings of the National Academy of Sciences, shedding light on the most significant increase in complexity in the history of life’s evolution on Earth: the origin of the eukaryotic cell.
While the endosymbiotic theory is widely accepted, the billions of years that have passed since the fusion of an archaea and a bacteria have resulted in a lack of evolutionary intermediates in the phylogenetic tree until the emergence of the eukaryotic cell. It is a gap in our knowledge, referred to as the black hole at the heart of biology.
“The new study is a blend of theoretical and observational approaches that quantitatively understands how the genetic architecture of life was transformed to allow such an increase in complexity,” stated Dr. Enrique M. Muro, representative of Johannes Gutenberg University Mainz (JGU) in this project.
Imagine the tiniest game of checkers in the world—one played by using lasers to precisely shuffle around ions across a very small grid.
That’s the idea behind a recent study published in the journal Physical Review Letters. A team of theoretical physicists from Colorado has designed a new type of quantum “game” that scientists can play on a real quantum computer—or a device that manipulates small objects, such as atoms, to perform calculations.
The researchers even tested their game out on one such device, the Quantinuum System Model H1 Quantum Computer developed by the company Quantinuum. The study is a collaboration between scientists at the University of Colorado Boulder and Quantinuum, which is based in Broomfield, Colorado.
Astronomers have detected the most promising signs yet of a possible biosignature outside the solar system, although they remain cautious.
Using data from the James Webb Space Telescope (JWST), the astronomers, led by the University of Cambridge, have detected the chemical fingerprints of dimethyl sulfide (DMS) and/or dimethyl disulfide (DMDS), in the atmosphere of the exoplanet K2-18b, which orbits its star in the habitable zone.
On Earth, DMS and DMDS are only produced by life, primarily microbial life such as marine phytoplankton. While an unknown chemical process may be the source of these molecules in K2-18b’s atmosphere, the results are the strongest evidence yet that life may exist on a planet outside our solar system.
In the heart of Canada’s Rocky Mountains, an unassuming yet remarkable butterfly has been quietly flying under our scientific radar for years. With a wingspan of an inch to an inch and a half, and wings that are brown on top and grayish brown with black spots below, this population was long thought to belong to the Half-moon Hairstreak (Satyrium semiluna). However, the isolated hairstreak butterflies of Blakiston Fan in Waterton Lakes National Park, Alberta, have now been recognized as a distinct species: Satyrium curiosolus, or the Curiously Isolated Hairstreak.
A recent study by an international collaborative team, published in ZooKeys, uncovered the unique evolutionary history of this population. The results were striking: Satyrium curiosolus has been completely isolated from its closest relatives for quite a while—possibly up to 40,000 years—becoming more and more genetically and ecologically unique along the way.
An international team of microbiologists from the Medical University of Graz, the DSMZ—German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany)—and the University of Illinois (U.S.) has identified and described a previously unknown species of methane-producing archaea in the human gut: Methanobrevibacter intestini sp. nov. (strain WWM1085).
In addition, a new variant of the species Methanobrevibacter smithii, which is referred to as GRAZ-2, was isolated. The scientists have thus taken another important step toward understanding the interaction between humans and the microbiome. The study is published in the International Journal of Systematic and Evolutionary Microbiology.
Finger-shaped tactile sensor advances robotic touch with multi-directional force detection and material identification
Posted in biotech/medical, cyborgs, robotics/AI, security, virtual reality | Leave a Comment on Finger-shaped tactile sensor advances robotic touch with multi-directional force detection and material identification
The development of increasingly sophisticated sensors can facilitate the advancement of various technologies, including robots, security systems, virtual reality (VR) equipment and sophisticated prosthetics. Multimodal tactile sensors, which can pick up different types of touch-related information (e.g., pressure, texture and type of material), are among the most promising for applications that can benefit from the artificial replication of the human sense of touch.