Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The Universe Tried to Hide the Gravity Particle. Physicists Found a Loophole

Head to https://brilliant.org/Spacetime/ to start learning for free for 30 days. Plus, our viewers get 20% off an annual Premium subscription for unlimited daily access to everything Brilliant has to offer.

Physicists have long believed that detecting the particle of gravity—the graviton—was fundamentally impossible, with the universe itself seeming to block every direct attempt. This episode explores a new generation of clever experiments that may finally let us detect gravity’s particle, and why even succeeding wouldn’t quite mean what we think it does.

Sign Up on Patreon to get access to the Space Time Discord!
/ pbsspacetime.

Check out the Space Time Merch Store.
https://www.pbsspacetime.com/shop.

Sign up for the mailing list to get episode notifications and hear special announcements!
https://mailchi.mp/1a6eb8f2717d/space… the Entire Space Time Library Here: https://search.pbsspacetime.com/ Hosted by Matt O’Dowd Written by Richard Dyer & Matt O’Dowd Post Production by Leonardo Scholzer Directed by Andrew Kornhaber Associate Producer: Bahar Gholipour Executive Producer: Andrew Kornhaber Executive in Charge for PBS: Maribel Lopez Director of Programming for PBS: Gabrielle Ewing Assistant Director of Programming for PBS: Mike Martin Spacetime is a production of Kornhaber Brown for PBS Digital Studios. This program is produced by Kornhaber Brown, which is solely responsible for its content. © 2026 PBS. All rights reserved. End Credits Music by J.R.S. Schattenberg: / multidroideka Space Time Was Made Possible In Part By: Big Bang Alexander Tamas David Paryente Juan Benet Mark Rosenthal Morgan Hough Peter Barrett Santiago Tj Steyn Vinnie Falco Supernova Ethan Cohen Glenn Sugden Grace Biaelcki Mark Heising Stephen Wilcox Tristan Lucian Claudius Aurelius Tyacke Hypernova Alex Kern Ben Delo Cal Stephens chuck zegar David Giltinan Dean Galvin Donal Botkin Gregory Forfa Jesse Cid Dyer John R. Slavik Justin Lloyd Kenneth See Massimiliano Pala Michael Tidwell Mike Purvis Paul Stehr-Green Scott Gorlick Scott Gray Spencer Jones Stephen Saslow Thomas Mouton Zachary Haberman Антон Кочков Daniel Muzquiz Gamma Ray Burst Aaron Pinto Adrien Molyneux Almog Cohen Anthony Leon Arko Provo Mukherjee Ayden Miller Ben McIntosh Bradley Jenkins Bradley Ulis Brandon Lattin Brian Cook Bryan White Chris Liao Christopher Wade Chuck Lukaszewski Collin Dutrow Craig Falls Craig Stonaha Dan Warren Daniel Donahue Daniel Jennings Daron Woods Darrell Stewart David Johnston Doyle Vann Eric Kiebler Eric Raschke Eric Schrenker Faraz Khan Frederic Simon Harsh Khandhadia Ian Williams Isaac Suttell James Trimmier Jeb Campbell Jeremy Soller Jerry Thomas jim bartosh John Anderson John De Witt John Funai John H. Austin, Jr. John591 Joseph Salomone Junaid Ali Kacper Cieśla Kane Holbrook Keith Pasko Kent Durham Koen Wilde Kyle Atkinson Marcelo Garcia Marion Lang Mark Daniel Cohen Mark Delagasse Matt Kaprocki Matthew Johnson Michael Barton Michael Clark Michael Lev Michael Purcell Nathaniel Bennett Nick Hoffenstoffer III Nicolas Katsantonis Paul Wood Rad Antonov Reuben Brewer Richard Steenbergen Robert DeChellis Ross Story Russell Moore SamSword Sandhya Devi Satwik Pani Sean Owen Shane Calimlim SilentGnome Sound Reason Steffen Bendel Steven Giallourakis Terje Vold Thomas Dougherty Tomaz Lovsin Tybie Fitzhugh Vlad Shipulin William Flinn WILLIAM HAY III Zac Sweers.

Search the Entire Space Time Library Here: https://search.pbsspacetime.com/

The layer 6b theory of attention

(A) Neuromodulatory projections of the ascending arousal system project divergent axons across the cortex, including to L6b, providing state-dependent signals. Likewise, higher-order cortical axons project to multiple cortical regions, including L6b, providing top-down volitional signals. L6b integrates the convergent input from these two pathways and directs its output to CTC loops with fast and focused activation.

(B) L6b is depolarized by arousal-promoting neuromodulators (left), and we hypothesize that the addition of higher-order cortical feedback strongly activates L6b (right). Thus, the role of neuromodulation is to bring L6b close to the activation threshold across the cortex so that specific L6b circuits can be more easily recruited by specific top-down cortical input. ACh, acetylcholine; 5HT, serotonin; DA, dopamine; NA, noradrenaline; HIS, histamine.

Measuring spin correlation between quarks during QCD confinement

The STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory demonstrates evidence of spin correlations in $$\Lambda \bar{\Lambda }$$ Λ Λ ¯ hyperon pairs inherited from virtual spin-correlated strange quark–antiquark pairs during QCD confinement.

Immune gene diversity and STING1 variants in shaping cancer immunity across different genetic ancestry populations

Hu et al. analyzed non-synonymous SNPs across diverse human populations and revealed divergent evolutionary pressures on immune-and cancer-related genes. By integrating population diversity with functional evaluation, they identified STING1 variants as modulators of interferon signaling. Their findings suggest that germline variations shaped by genetic ancestry may influence cancer immunity.

PRISM reanalyzes 4,400 tumors, reshaping the debate over tumor microbiomes

When scientists sequence tumor DNA, they typically find small amounts of genetic code from bacteria, viruses and fungi—microorganisms that—if actually present in tumor tissues—could influence how they grow, evade immunity or respond to treatment. But do microorganisms truly reside in tumors, or do the samples become contaminated before sequencing occurs?

Independent analyses of the same genomic data have reached wildly different conclusions. Now, researchers at Rutgers Cancer Institute have developed a computational tool that settles the controversy by distinguishing genuine microbial signals from artifacts. Their findings are published in Cancer Cell.

“There are microbes all over the environment, on our skin and in our breath,” said Subhajyoti De, a member of the Genomic Instability and Cancer Genetics Program at Rutgers Cancer Institute and the senior author of the study. “There could be DNA particles floating in the air. How do you know whether you’re finding came from the tissue you were interested in, or whether something was introduced along the way?”

Ultrastructural and Histological Cryopreservation of Mammalian Brains by Vitrification

Studies of whole brain cryopreservation are rare but are potentially important for a variety of applications. It has been demonstrated that ultrastructure in whole rabbit and pig brains can be cryopreserved by vitrification (ice-free cryopreservation) after prior aldehyde fixation, but fixation limits the range of studies that can be done by neurobiologists, including studies that depend upon general molecular integrity, signal transduction, macromolecular synthesis, and other physiological processes. We now show that whole brain ultrastructure can be preserved by vitrification without prior aldehyde fixation. Rabbit brain perfusion with the M22 vitrification solution followed by vitrification, warming, and fixation showed an absence of visible ice damage and overall structural preservation, but osmotic brain shrinkage sufficient to distort and obscure neuroanatomical detail. Neuroanatomical preservation in the presence of M22 was also investigated in human cerebral cortical biopsies taken after whole brain perfusion with M22. These biopsies did not form ice upon cooling or warming, and high power electron microscopy showed dehydrated and electron-dense but predominantly intact cells, neuropil, and synapses with no signs of ice crystal damage, and partial dilution of these samples restored normal cortical pyramidal cell shapes. To further evaluate ultrastructural preservation within the severely dehydrated brain, rabbit brains were perfused with M22 and then partially washed free of M22 before fixation. Perfusion dilution of the brain to 3-5M M22 resulted in brain re-expansion and the re-appearance of well-defined neuroanatomical features, but rehydration of the brain to 1M M22 resulted in ultrastructural damage suggestive of preventable osmotic injury caused by incomplete removal of M22. We conclude that both animal and human brains can be cryopreserved by vitrification with predominant retention of ultrastructural integrity without the need for prior aldehyde fixation. This observation has direct relevance to the feasibility of human cryopreservation, for which direct evidence has been lacking until this report. It also provides a starting point for perfecting brain cryopreservation, which may be necessary for lengthy space travel and could allow future medical time travel.

The authors have declared no competing interest.

What to watch as fungal infections rise: Species that can quickly ‘translate’ fat-use proteins

A new study by researchers at Kiel University and MPI-EvolBio describes how more efficient protein production drives the adaptation of fungi to the human body, potentially turning previously harmless species into emerging pathogens. In the wake of global change and the associated rise in temperatures, fungal infections are on the increase worldwide, threatening crops, wildlife and, also, human health. Many fungal species are completely harmless and fulfill important ecological functions, such as decomposing organic matter and releasing nutrients into the soil.

As symbionts of multicellular organisms, they perform useful functions for their host. On the other hand, some species are so-called opportunistic human pathogens: particularly in a weakened immune system, such fungi can colonize the body and cause serious and even life-threatening infections.

While fungi are often studied as pathogens of crops at institutions such as Kiel University and the Max Planck Institute for Evolutionary Biology in Plön (MPI-EvolBio), researchers are increasingly turning their attention to their harmful effects on humans. A research team led by Professor Eva Stukenbrock, head of the Environmental Genomics group at Kiel University and MPI-EvolBio, has conducted a new study to investigate why certain fungi might become human pathogens in the course of global change. To this end, the researchers analyzed various fungal species of the order Trichosporonales, which includes both harmless and dangerous species for humans.

/* */