Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

JUST RECORDED: Elon Musk Announces MAJOR Company Shakeup

Elon Musk Announces MAJOR Company Changes as XAI/SpaceX ## Elon Musk is announcing significant changes and advancements across his companies, primarily focused on developing and integrating artificial intelligence (AI) to drive innovation, productivity, and growth ## ## Questions to inspire discussion.

Product Development & Market Position.

🚀 Q: How fast did xAI achieve market leadership compared to competitors?

A: xAI reached number one in voice, image, video generation, and forecasting with the Grok 4.20 model in just 2.5 years, outpacing competitors who are 5–20 years old with larger teams and more resources.

đŸ“± Q: What scale did xAI’s everything app reach in one year?

A: In one year, xAI went from nothing to 2M Teslas using Grok, deployed a Grok voice agent API, and built an everything app handling legal questions, slide decks, and puzzles.

Cell Type-Specific Contributions of UBE3A to Angelman Syndrome Behavioral Phenotypes

ENeuro: Ringelberg et al. identify a key role for excitatory neuron loss of UBE3A in motor, innate, and sleep behavioral phenotypes of Angelman syndrome model mice.

▶


AS is a neurodevelopmental disorder with no disease-modifying treatment. However, clinical trials are currently underway using antisense oligonucleotides to unsilence the dormant paternal UBE3A allele, thereby normalizing UBE3A levels (Ionis: NCT05127226; Ultragenyx: NCT04259281). While this approach holds exciting promise and shows efficacy in mouse models (Meng et al., 2015; Milazzo et al., 2021), there is currently scant information regarding the key cell types or brain regions that require UBE3A reinstatement to mitigate core symptoms of AS. This holds particular importance, as effective biodistribution is a key concern in genetic therapies for CNS disorders (Roberts et al., 2020; Jafar-Nejad et al., 2021; Ling et al., 2023), and suboptimal targeting of necessary cell classes could hamper success. Moreover, mouse models of AS require early postnatal Ube3a reinstatement to achieve optimal phenotypic recovery (Silva-Santos et al., 2015; Sonzogni et al., 2020); early intervention could be difficult to achieve in the patient population without a corresponding early diagnosis, meaning many AS individuals are likely beyond the critical window to maximally benefit from UBE3A reinstatement-based therapies. Therefore, additional work is needed to better understand how loss of UBE3A leads to symptoms, as these insights will aid both in understanding the cell types that must be targeted for optimal genetic interventions and in developing alternative therapeutic options.

Our laboratory’s previous work identified an outsized role of GABAergic loss of UBE3A in hyperexcitability phenotypes. GABAergic loss of UBE3A drives increased delta power on cortical EEG (Judson et al., 2016), a phenotype that correlates with the severity of a range of symptoms in AS individuals (Hipp et al., 2021; Ostrowski et al., 2021). Further, mice with Ube3a deleted from GABAergic neurons show decreased threshold to chemically and acoustically driven seizures, and they also exhibit spontaneous behavioral seizures, a phenotype not observed in AS model mice on a C57BL/6J background (Judson et al., 2016; Gu et al., 2019). These data forewarn that UBE3A reinstatement in a manner biased to glutamatergic neurons could potentially worsen epilepsy-related symptoms and highlight the importance of studying the neuronal populations regulating other behaviors.

Based on the exaggerated role of GABAergic neurons in AS seizure phenotypes, we predicted that GABAergic deletion of Ube3a would underlie a broad range of behavioral phenotypes in AS mice. In the present study, we instead found a larger role of Ube3a deletion from glutamatergic neurons in motor coordination, measured by rotarod and open field behavior, and innate species-specific behaviors such as marble burying. Furthermore, glutamatergic loss of UBE3A appears to mediate alterations in sleep patterning and induces some sleep fragmentation, while UBE3A loss from GABAergic neurons only caused fragmented sleep. Interestingly, glutamatergic reinstatement of Ube3a also rescued the decreased REM sleep observed in AS mice, as estimated by the PiezoSleep system. While this study identified some roles of GABAergic neurons in nest building behavior and sleep fragmentation, our data largely suggest a divergence of the neural circuitry underlying the motor, innate behavior, and sleep phenotypes of AS mice from the circuitry responsible for seizure susceptibility and cortical EEG patterns.

Abstract: A new contributor to cardiac allograft vasculopathy (CAV)


Emmanuel Zorn & team discover plasma cells in human cardiac allografts with vasculopathy target bilirubin, revealing local heme catabolism:

The image shows immunofluorescence staining for bilirubin (green) and a-smooth muscle cell actin (red) of cardiac tissue with CAV.


1Columbia University Irving Medical Center, New York, New York, USA.

2Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany.

3Kidney Transplant Unit, Nephrology Department, Vall d’Hebron University Hospital, Barcelona, Spain.

Bennu asteroid reveals new origins for life’s amino acids

“Our results flip the script on how we have typically thought amino acids formed in asteroids,” said Dr. Allison Baczynski.


Did the ingredients for life as we know it exist in the early solar system? This is what a recent study published in the Proceedings of the National Academy of Sciences hopes to address as a team of researchers investigated new evidence for how amino acids, the known building blocks of life, ended up in the asteroid Bennu, which is estimated to have formed during the early days of the solar system billions of years ago. This study has the potential to help scientists better understand the early solar system, how life might have formed on Earth, and potentially elsewhere.

For the study, the researchers analyzed samples of asteroid Bennu that were retrieved and returned to Earth by NASA’s OSIRIS-REx mission in September 2023. The goal of the study was to ascertain the origins of the amino acids that had previously been identified in Bennu samples, which could help scientists gain insights into the origins of life in the early solar system. To accomplish this, the researchers used novel methods for measuring the amount of amino acids while comparing these findings to the carbonaceous meteorite Murchison.

In the end, the researchers discovered that glycine, one of the simplest amino acid molecules, with Bennu was formed in early ices in the early solar system while the glycine found in Murchison was formed in a protoplanetary body, which formed later in the history of the solar system. Additionally, the researchers found that certain aspects of the protein-building amino acid, glutamic acid, found in the Bennu samples, experienced significant changes during its formation and evolution.

Why Earth-like worlds might be rare

Dr. Craig Walton: “This makes searching for life on other planets a lot more specific. We should look for solar systems with stars that resemble our own Sun.”


How common are Earth-like worlds beyond our solar system? This is what a recent study published in Nature Astronomy hopes to address as an international team of scientists unveiled new evidence that Earth-like worlds might be rarer than previously thought. This study has the potential to help scientists better understand the formation and evolution of Earth-like worlds and what this could mean for finding life beyond Earth.

For the study, the researchers used a series of computer models to simulate the formation of the interiors of potential Earth-like worlds, specifically focusing on planetary interior formation. This is because the researchers note how nitrogen and phosphorus are essential for the formation of habitable worlds, and the planetary mantle, the layer just beneath the planetary crust, is where they are formed and exist.

In the end, the researchers found that the right amount of oxygen needs to be present within the mantle for nitrogen and phosphorus to form. They note while Earth has these conditions, worlds with less oxygen in their mantle could limit the ability of nitrogen and phosphorus to form, resulting in non-habitable worlds.

Engineering chimeric antigen receptor CD4 T cells for Alzheimer’s disease

Recent advancements in immunotherapy have led to the first successful application of chimeric antigen receptor (CAR) T-cell therapy in treating neurodegenerative diseases, specifically Alzheimer’s disease. In a study conducted by researchers at Washington University in St. Louis and the Weizmann Institute of Science, T-cells were genetically engineered to recognize and target toxic beta-amyloid plaques. When tested on mouse models, three injections of these modified cells resulted in a significant reduction of protein aggregates within just ten days of the final administration. Beyond plaque clearance, the treatment successfully mitigated neuroinflammation, as evidenced by decreased microglial and astrocytic activity. These findings demonstrate the potential of CAR-T technology to rapidly clear pathological protein deposits and restore nervous tissue function, offering a promising new frontier for the treatment of Alzheimer’s and other proteinopathies.


Alzheimer’s disease (AD) is the prevailing cause of age-associated dementia worldwide. Current standard of care relies on antibody-based immunotherapy. However, antibody-based approaches carry risks for patients, and their effects on cognition are marginal. Increasing evidence suggests that T cells contribute to AD onset and progression. Unlike the cytotoxic effects of CD8+ cells, CD4+ T cells capable of regulating inflammation show promise in reducing pathology and improving cognitive outcomes in mouse models of AD and in aging. Here, we sought to exploit the beneficial properties of CD4+ T cells while circumventing the need for TCR and peptide-MHC antigen discovery, thereby providing a potential universal therapeutic approach. To achieve this, we engineered CD4+ T cells with chimeric antigen receptors (CARs) targeting fibrillar forms of aggregated amyloid-ÎČ. Our findings demonstrate that optimized CAR-T cells can alter amyloid deposition in the dura and reduce parenchymal pathology in the brain. Furthermore, we observed that CAR-T treatment promotes the expansion and recruitment of endogenous CD4+ T cells into the brain parenchyma and leptomeninges. In summary, we established the feasibility of amyloid plaque-specific CAR-T cells as a potential therapeutic avenue for AD. These findings highlight the potential of CD4+ CAR-T therapy not only to modify amyloid pathology but also to reshape the immune landscape of the CNS, paving the way for future development of cellular immunotherapies for neurodegenerative disease.

Keywords: Alzheimer’s disease; CAR T cells; T cell; chimeric antigen receptors; neurodegeneration.

PubMed Disclaimer

New laser “comb” can enable rapid identification of chemicals with extreme precision

Researchers demonstrated a broadband infrared frequency comb that can operate stably, efficiently, and accurately without the need for bulky external components. The device could be utilized in a remote sensor or portable mass spectrometer that can track and monitor multiple chemicals in real-time for extended periods.

/* */