Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Ray Dalio: AI Is Accelerating the Collapse — Most People Aren’t Ready for What’s Next

With rapid advancements in AI and automation, individuals must prepare for a potentially unstable future by building financial strength, adapting to change, and rethinking traditional economic policies to avoid societal collapse ## ## Questions to inspire discussion.

Financial Preparation.

💰 Q: How should I structure my finances to build wealth? A: Focus on the fundamental equation: earn minus spend equals save, then invest that saved amount wisely to determine your financial success, as this simple formula is the foundation of building financial strength.

🏃 Q: When should I consider relocating geographically? A: Evaluate your location during major financial shifts and changing world orders, as the ability to move to better places and away from bad places has been historically important for protecting wealth and opportunity.

Career Strategy.

🎯 Q: How do I choose a career that maximizes financial success? A: Select careers that align with your passions while understanding their financial implications, since the work you do will directly impact your financial success during economic transitions.

A protein found in the GI tract can neutralize many bacteria

The mucosal surfaces that line the body are embedded with defensive molecules that help keep microbes from causing inflammation and infections. Among these molecules are lectins—proteins that recognize microbes and other cells by binding to sugars found on cell surfaces.

One of these lectins, MIT researchers have found, has broad-spectrum antimicrobial activity against bacteria found in the GI tract. This lectin, known as intelectin-2, binds to sugar molecules found on bacterial membranes, trapping the bacteria and hindering their growth. Additionally, it can crosslink molecules that make up mucus, helping to strengthen the mucus barrier.

“What’s remarkable is that intelectin-2 operates in two complementary ways. It helps stabilize the mucus layer, and if that barrier is compromised, it can directly neutralize or restrain bacteria that begin to escape,” says Laura Kiessling, the Novartis Professor of Chemistry at MIT and the senior author of the study.

Collision-induced ribosome degradation driven by ribosome competition and translational perturbations

How cells eliminate inefficient ribosomes.

Inside every cell, ribosomes act as tiny but vital factories that build proteins, translating genetic information into the molecules that sustain life. Although ribosomes share the same basic structure, not all of them work with equal precision. Until now, scientists did not fully understand how cells detect and handle ribosomes that underperform.

Addressing this question, a team of researchers has identified a quality control mechanism that ensures only the most competent ribosomes survive. Their study, published in Nature Communications shows that ribosomes compete during protein synthesis. When translation is disrupted, the less efficient ribosomes are selectively broken down, while the stronger ones continue functioning.

Using biochemical and genetic analyses in yeast, the researchers examined how ribosomes behave when translation is disrupted. The team engineered cells to contain a functional but suboptimal ribosome variant. These slower-moving ribosomes are overtaken on messenger RNA by faster, native ribosomes, causing the two types to collide. Such ribosome-ribosome collisions activate a ubiquitination-dependent quality control pathway that selectively removes the less efficient ribosomes.

The team also explored how external factors, such as the anticancer drug cisplatin affect this process. Cisplatin, known for binding to RNA and DNA, was found to increase ribosome collisions, which in turn promoted ribosome degradation. This insight could improve understanding of how the drug acts inside cells and why it sometimes causes side effects.

The implications of this discovery extend beyond basic biology. By showing how cells maintain the quality of their protein factories, the study provides a foundation for understanding disorders caused by ribosome malfunction, known as ribosomopathies. It may also open the door to new approaches for improving the safety and effectiveness of certain drugs.

An earthquake on a chip: New tech could make smartphones smaller, faster

A team of engineers has made major strides in generating the tiniest earthquakes imaginable. The team’s device, known as a surface acoustic wave phonon laser, could one day help scientists make more sophisticated versions of chips in cellphones and other wireless devices—potentially making those tools smaller, faster and more efficient.

The study was conducted by Matt Eichenfield, an incoming faculty member at the University of Colorado Boulder, and scientists from the University of Arizona and Sandia National Laboratories. The researchers published their findings in the journal Nature.

The new technology utilizes a phenomenon known as surface acoustic waves, or SAWs act a little like soundwaves, but, as their name suggests, they travel only on the top layer of a material.

Astronomers discover 19 new pulsars by analyzing FAST archival data

Astronomers from Nanjing University in China have analyzed the archival data from the Five-hundred-meter Aperture Spherical radio Telescope (FAST), searching for new pulsars. As a result, they detected 19 such objects that were missed by previous studies. The findings were presented January 5 on the pre-print server arXiv.

Pulsars are highly magnetized, rotating neutron stars emitting a beam of electromagnetic radiation. They are usually identified in the form of short bursts of radio emission; however, some of them are also observed via optical, X-ray and gamma-ray telescopes.

Spatial Reorganization of Chromatin Architecture Shapes the Expression Phenotype of Therapy‐Induced Senescent Cells

In the course of TIS, cells undergo a profound epigenomic reorganization that underlies the development of a senescence-associated phenotype and formation of an inflammatory microenvironment.

Memory Deficits in Cancer Patients With Serum NMDA Receptor Autoantibodies

Serum NMDAR autoantibodies are associated with isolated memory deficits in patients with cancer and might serve as a potential biomarker for cancer-related cognitive impairment.


ObjectivesNeuronal autoantibodies are linked to cognitive impairment in neurologic diseases and can be associated with tumors. In patients with cancer, IgA/IgM N-Methyl-D-Aspartate receptor (NMDAR) autoantibodies are most common, yet their clinical relevance is unclear. We assessed cognitive function in cancer patients with serum NMDAR autoantibodies and compared the results with matched controls.

Glucocorticoid injection shows little benefit for knee osteoarthritis, clinical trial finds

Researchers in China have found no statistically significant advantage for infrapatellar fat pad glucocorticoid injection over saline for 12-week knee pain change or effusion synovitis volume change in inflammatory knee osteoarthritis.

Osteoarthritis affects approximately 595 million people worldwide, with knee joints identified as the most commonly affected. Symptomatic knee osteoarthritis is linked to physical disability, reduced quality of life, and increased mortality in older adults, while curative drugs remain lacking amid a rising burden tied to aging and obesity.

Some knee osteoarthritis involves inflammation, and inflammation can involve two nearby tissues—the fat pad under the kneecap and the joint lining—that are structurally interconnected and serve as important sources of inflammation in knee osteoarthritis.

/* */