“Breaking first is the bottom rung of the career ladder.”
Researchers have identified how variations in a gene called TRIO can influence brain functions and result in distinct neurodevelopmental diseases. The study, published in the journal eLife, could pave the way for future therapeutic developments.
TRIO encodes a diverse group of proteins that control the function and structure of the cytoskeleton—a cell’s internal scaffolding. Rare damaging variants in this gene have been identified in individuals with intellectual disability, autism spectrum disorder, schizophrenia, and related disorders. However, the mechanisms underlying the associations aren’t yet understood.
“It’s really extraordinary that different variants in this single gene can have such dramatically different effects on brain development and function,” says Anthony Koleske, Ph.D., Ensign Professor of Molecular Biophysics and Biochemistry at Yale School of Medicine (YSM) and the study’s senior author.
From river-clogging plants to disease-carrying insects, the direct economic cost of invasive species worldwide has averaged about $35 billion a year for decades, researchers said Monday.
Since 1960, damage from non-native plants and animals expanding into new territory has cost society more than $2.2 trillion, more than 16 times higher than previous estimates, they reported in the journal Nature Ecology & Evolution.
The accelerating spread of invasive species —from mosquitoes to wild boar to tough-to-eradicate plants—blights agriculture, spreads disease and drives the growing pace of species extinction.
A team of physicists has embarked on a journey where few others have gone: into the glue that binds atomic nuclei. The resultant measurement, which was extracted from experimental data taken at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, is the first of its kind and will help physicists image particles called gluons.
The paper revealing the results is published and featured as an editor’s suggestion in Physical Review Letters.
Gluons mediate the strong force that “glues” together quarks, another type of subatomic particle, to form the protons and neutrons situated at the center of atoms of ordinary matter. While previous measurements have allowed researchers to learn about the distribution of gluons in solitary protons or neutrons, they know less about how gluons behave inside protons or neutrons bound in nuclei.
Researchers at the School of Engineering of the Hong Kong University of Science and Technology (HKUST) have developed a novel elastic alloy called Ti78Nb22, which achieves remarkable efficiency for solid-state heat pumping and exhibits a reversible temperature change (ΔT) ability that is 20 times greater than that of conventional metals when stretched or compressed, offering a promising green alternative to traditional vapor-compression heating and cooling technologies.
A new tool has been developed to better assess the performance of AI models. It was developed by bioinformaticians at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS).
“DataSAIL” automatically sorts training and test data so that they differ as much as possible from each other, allowing for the evaluation of whether AI models work reliably with different data. The researchers have now presented their approach in the journal Nature Communications.
Machine learning models are trained with huge amounts of data and must be tested before practical use. For this, the data must first be divided into a larger training set and a smaller test set—the former is used for the model to learn, and the latter is used to check its reliability.
Juan Casado Cordón, Professor of Physical Chemistry at the University of Malaga, considers graphene—an infinite layer of carbon atoms—as one of the greatest discoveries of the last 20 years due to its “unique properties” such as high electrical and thermal conductivity or its great flexibility and, also, resistance. Qualities that become exceptional, he explains, with a recently found evolution consisting in joining two layers of this material—bilayer graphene.
Researchers from the University of Malaga, led by Casado Cordón, and from the Complutense University, under the coordination of Professor Nazario Martín, have taken a step further and created an unprecedented molecular model of bilayer graphene that is capable of controlling rotation, which in turn allows controlling conductivity and achieving “potentially spectacular semiconducting properties.”
The result is a new model molecule of bilayer graphene. “By designing covalently bound molecular nanographenes we can simulate the search for the magic angle between graphene-like sheets, which is where semiconductivity is achieved, a key property in, for example, the construction of transistors, the basic units of computers,” explains this scientist from the Faculty of Science. This finding has been published in Nature Chemistry.
A research team has discovered how to make a promising energy-harvesting material much more efficient—without relying on rare or expensive elements. The material, called β-Zn4Sb3, is a tellurium-free thermoelectric compound that can convert waste heat into electricity.
In their study published in Advanced Science, scientists used advanced neutron scattering techniques to peek inside the crystal and found something surprising: tiny heat vibrations (called phonons) were being disrupted by “rattling” atoms inside the structure. This phenomenon, known as phonon avoided crossing, dramatically slowed down how heat travels through the material.
Thanks to this effect, the material’s thermal conductivity dropped to extremely low levels—great news for thermoelectric performance. Even better, the researchers found that the single-crystal version of this material also conducts electricity better than its polycrystalline counterpart, reaching a high power conversion efficiency of 1.4%.
Kirigami is a traditional Japanese art form that entails cutting and folding paper to produce complex three-dimensional (3D) structures or objects. Over the past decades, this creative practice has also been applied in the context of physics, engineering, and materials science research to create new materials, devices and even robotic systems.
Researchers at Sichuan University and McGill University recently devised a new approach for the inverse engineering of kirigami, which does not rely on advanced computational tools and numerical algorithms. This new method, outlined in a paper published in Physical Review Letters, could simplify the design of intricate kirigami for a wide range of real-world applications.
“This work is a natural extension of our previous work on kirigami,” Damiano Pasini, senior corresponding author of the paper, told Phys.org.
Putting hypersensitive quantum sensors in a living cell is a promising path for tracking cell growth and diagnosing diseases—even cancers—in their early stages.
Many of the best, most powerful quantum sensors can be created in small bits of diamond, but that leads to a separate issue: It’s hard to stick a diamond in a cell and get it to work.
“All kinds of those processes that you really need to probe on a molecular level, you cannot use something very big. You have to go inside the cell. For that, we need nanoparticles,” said University of Chicago Pritzker School of Molecular Engineering Ph.D. candidate Uri Zvi. “People have used diamond nanocrystals as biosensors before, but they discovered that they perform worse than what we would expect. Significantly worse.”