Toggle light / dark theme

Just like Wi-Fi: Finland working on transmitting electricity without wires

In controlled experiments, engineers have shown that electricity can be transmitted through the air using highly controlled electromagnetic fields and resonant coupling techniques, conceptually similar to the way data is sent via Wi-Fi but tailored for energy transfer.

These approaches build on decades of research into magnetic resonance and inductive power transfer, which seek to send energy efficiently across short distances without physical contact between transmitter and receiver…

…Past research from the university demonstrated that magnetic loop antennas can transfer power wirelessly at relatively high efficiency over short ranges, offering insights into how to optimize coupling and reduce energy losses.

More recent demonstrations reported in global tech news describe Finnish teams successfully powering small devices through the air using wireless power transfer methods.


Finland continues to make progress in the field of wireless electricity transmission, an area of research that aims to send power through the air without the use of traditional cables or plugs.

Recent demonstrations and experiments by Finnish researchers have highlighted steady advancements in technology that could one day reshape how devices are powered, though widespread commercial deployment remains distant.

Former Twitter co-founder launches messaging app run on Bluetooth

Jack Dorsey, the co-founder of Twitter, launched BitChat over the weekend as a beta messaging app that works over Bluetooth networks rather than WiFi or mobile data.

Twitter co-founder and former CEO Jack Dorsey has launched a decentralised messaging app to take on WhatsApp and make communication possible without internet access.

Dorsey, who stepped down as CEO in 2021, wrote on social media that he had launched BitChat, a messaging network that works over Bluetooth networks, for beta testing over the weekend.

StealC hackers hacked as researchers hijack malware control panels

A cross-site scripting (XSS) flaw in the web-based control panel used by operators of the StealC info-stealing malware allowed researchers to observe active sessions and gather intelligence on the attackers’ hardware.

StealC emerged in early 2023 with aggressive promotion on dark web cybercrime channels. It grew in popularity due to its evasion and extensive data theft capabilities.

In the following years, StealC’s developer added multiple enhancements. With the release of version 2.0 last April, the malware author introduced Telegram bot support for real-time alerts and a new builder that could generate StealC builds based on templates and custom data theft rules.

EXLUMINA Founder: SpaceX Already Controls the Future of Space AI

SpaceX is well-positioned to dominate the future of space AI due to its innovative technologies, scalable satellite production, and strategic partnerships, which will enable it to efficiently deploy and operate a massive network of satellites with advanced computing capabilities ## ## Questions to inspire discussion.

Launch Economics & Infrastructure.

🚀 Q: Why is Starship essential for space AI data centers? A: Starship enables 100-1000x more satellites than Falcon 9, making orbital AI economically viable through massive scaling and lower launch costs, while Falcon 9 remains too expensive for commercial viability at scale.

🛰️ Q: What is SpaceX’s deployment plan for AI satellites? A: SpaceX plans Starlink version 3 satellites with 100 Nvidia chips each, deploying 5,000 satellites via 100 Starship launches at 50 satellites per flight to create a gigawatt-scale AI constellation by early 2030s.

📈 Q: What launch cadence gives SpaceX its advantage? A: SpaceX plans 10,000 annual launches and produces satellites at 10-100x the level of competitors, creating a monopoly on launch and manufacturing that positions them as the gatekeeper to space AI success.

Energy & Power Systems.

SpaceX IPO, Robotaxi Rules, and the Regulatory Wall Facing Elon Musk

Regulatory hurdles, rather than engineering challenges, are the main obstacles hindering the progress and success of Elon Musk’s companies, including SpaceX and Tesla.

## Questions to inspire discussion.

SpaceX Strategic Direction.

🚀 Q: Will SpaceX IPO due to defense contractor requirements? A: SpaceX’s expanding role as a defense contractor through projects like Star Shield increases IPO likelihood, as military requirements typically favor public companies for transparency and accountability according to Palmer Luckey.

🛰️ Q: How is SpaceX enabling freedom of information in restricted regions? A: Starlink has provided unfiltered internet access to Iranians since 2022 in coordination with the US government, successfully resisting signal jamming attempts and enabling freedom of information during protests.

💰 Q: What investment level is the space economy attracting in 2025? A: The space economy attracted $2.2 trillion in private investment in 2025, driven by SpaceX’s success, but viability of speculative models like space hotels and mining depends entirely on Starship’s cost and reliability.

First standalone spin-wave chip operates without external magnets for future telecom

The Politecnico di Milano has created the first integrated and fully tunable device based on spin waves, opening up new possibilities for the telecommunications of the future, far beyond current 5G and 6G standards. The study, published in the journal Advanced Materials, was conducted by a research group led by Riccardo Bertacco of the Department of Physics of the Politecnico di Milano, in collaboration with Philipp Pirro of Rheinland-Pfälzische Technische Universität and Silvia Tacchi of Istituto Officina dei Materiali—CNR-IOM.

Magnonics is an emerging technology that uses spin waves —collective excitations of electronic spins in magnetic materials—as an alternative to electrical signals. The spread of this technology has been restricted until now by the need for an external magnetic field, which has prevented it being incorporated into chips.

The new device developed at the Politecnico overcomes this hurdle: it is miniaturized (100 × 150 square micrometers, so much smaller than current radiofrequency signal processing devices based on acoustic waves); it is fully integrated on silicon—and therefore compatible with existing electronic platforms, and it functions without external magnets, thanks to an innovative combination of permanent SmCo micromagnets and magnetic flux concentrators.

Enthusiasts used their home computers to search for ET—scientists are homing in on 100 signals they found

For 21 years, between 1999 and 2020, millions of people worldwide loaned UC Berkeley scientists their computers to search for signs of advanced civilizations in our galaxy.

The project—called SETI@home, after the Search for Extraterrestrial Intelligence (SETI)—generated a loyal following eager to participate in one of the most popular crowd-sourced projects in the early days of the internet. They downloaded the SETI@home software to their home computers and allowed it to analyze data recorded at the now-defunct Arecibo Observatory in Puerto Rico to find unusual radio signals from space.

All told, these computations produced 12 billion detections— momentary blips of energy at a particular frequency coming from a particular point in the sky, according to computer scientist and project co-founder David Anderson.

Sleep variability linked with sleep apnea and hypertension

Over 70 million Americans wear digital activity trackers (DATs) to record their sleep, steps and heart rate. A new study from Scripps Research found that these devices could also provide insight into even more, including individual health risks like obstructive sleep apnea (OSA) and high blood pressure.

The findings, published in the Journal of Medical Internet Research on December 3, 2025, used DATs to identify an association between sleep variability—the night-to-night fluctuation of when an individual falls asleep and wakes—and their risk of developing sleep apnea and hypertension. This research joins a growing body of evidence that DATs could become more useful clinical tools to assess health risks in the near future.

“Data from digital activity trackers provides a unique way to detect meaningful health patterns from the devices that people already own,” says Stuti Jaiswal, senior author and assistant professor at Scripps Research, who is also a faculty hospitalist at Scripps Clinic. “Digital health studies have been gaining acceptance over the past decade, and we’re now demonstrating what these technologies can reveal about how sleep influences cardiovascular health.”

Global AI Adoption in 2025 — AI Economy Institute

Global adoption of artificial intelligence continued to rise in the second half of 2025, increasing by 1.2 percentage points compared to the first half of the year, with roughly one in six people worldwide now using generative AI tools, remarkable progress for a technology that only recently entered mainstream use.

To track this trend, we measure AI diffusion as the share of people worldwide who have used a generative AI product during the reported period. This measure is derived from aggregated and anonymized Microsoft telemetry and then adjusted to reflect differences in OS and device-market share, internet penetration, and country population. Additional details on the methodology are available in our AI Diffusion technical paper. 1

No single metric is perfect, and this one is no exception. Through the Microsoft AI Economy Institute, we continue to refine how we measure AI diffusion globally, including how adoption varies across countries in ways that best advance priorities such as scientific discovery and productivity gains. For this report, we rely on the strongest cross-country measure available today, and we expect to complement it over time with additional indicators as they emerge and mature.

Shrinking materials hold big potential for smart devices, researchers say

Wearable electronics could be more wearable, according to a research team at Penn State. The researchers have developed a scalable, versatile approach to designing and fabricating wireless, internet-enabled electronic systems that can better adapt to 3D surfaces, like the human body or common household items, paving the path for more precise health monitoring or household automation, such as a smart recliner that can monitor and correct poor sitting habits to improve circulation and prevent long-term problems.

The method, detailed in Science Advances, involves printing liquid metal patterns onto heat-shrinkable polymer substrates—otherwise known as the common childhood craft “Shrinky Dinks.” According to team lead Huanyu “Larry” Cheng, James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics in the College of Engineering, the potentially low-cost way to create customizable, shape-conforming electronics that can connect to the internet could make the broad applications of such devices more accessible.

“We see significant potential for this approach in biomedical uses or wearable technologies,” Cheng said, noting that the field is projected to reach $186.14 billion by 2030. “However, one significant barrier for the sector is finding a way to manufacture an easy-to-customize device that can be applied to freestanding, freeform surfaces and communicate wirelessly. Our method solves that.”

/* */