Toggle light / dark theme

Chip-sized optical amplifier can intensify light 100-fold with minimal energy

Light does a lot of work in the modern world, enabling all types of information technology, from TVs to satellites to fiber-optic cables that carry the internet across oceans. Stanford physicists recently found a way to make that light work even harder with an optical amplifier that requires low amounts of energy without any loss of bandwidth, all on a device the size of a fingertip.

Similar to sound amplifiers, optical amplifiers take a light signal and intensify it. Current small-sized optical amplifiers need a lot of power to function. The new optical amplifier, detailed in the journal Nature, solves this problem by using a method that essentially recycles the energy used to power it.

“We’ve demonstrated, for the first time, a truly versatile, low-power optical amplifier, one that can operate across the optical spectrum and is efficient enough that it can be integrated on a chip,” said Amir Safavi-Naeini, the study’s senior author and associate professor of physics in Stanford’s School of Humanities and Sciences. “That means we can now build much more complex optical systems than were possible before.”

Are Space Elevators Still a Thing for the Future?

🔒 Remove your personal information from the web at https://JoinDeleteMe.com/DROID and use code DROID for 20% off 🙌 DeleteMe international Plans: https://international.joindeleteme.com.
It’s been an idea that has been around since 1895 but only since the 1960s that it was taken seriously. But the biggest issue is how to make a cable over 36,000km that is light enough and strong enough. We now have the ability to make the materials but can we make them long enough to make it a reality, find out in today’s video.

Written, researched and presented by Paul Shillito.

To give one-off tips and donations please use the following :
https://www.buymeacoffee.com/curiousdroid.

Patreon : https://www.patreon.com/curiousdroid — For longer term channel support.

Paypal.me : https://paypal.me/curiousdroid — For 1 off direct tips and thank you payments.

Facebook : https://www.facebook.com/curiousdroid.

Amazon Leo satellites exceed brightness limits, study finds

Seeing a satellite zip across the night sky can be a fascinating sight. However, what may be spectacular for people on the ground is becoming a major problem for astronomers. A new study published on the arXiv preprint server has found that satellites from Amazon’s mega Leo constellation (originally known as Project Kuiper) are bright enough to disrupt astronomical research.

Amazon launched the first satellites for its Project Kuiper in April 2025. Eventually, the constellation will comprise 3,232 satellites to provide high-speed internet across the globe. However, this connectivity can come at a cost.

Nearly 800,000 Telnet servers exposed to remote attacks

Internet security watchdog Shadowserver tracks nearly 800,000 IP addresses with Telnet fingerprints amid ongoing attacks exploiting a critical authentication bypass vulnerability in the GNU InetUtils telnetd server.

The security flaw (CVE-2026–24061) impacts GNU InetUtils versions 1.9.3 (released 11 years ago in 2015) through 2.7 and was patched in version 2.8 (released on January 20).

“The telnetd server invokes /usr/bin/login (normally running as root) passing the value of the USER environment variable received from the client as the last parameter,” explained open-source contributor Simon Josefsson, who reported it.

Elon Musk Holds Surprise Talk At The World Economic Forum In Davos

The musk blueprint: navigating the supersonic tsunami to hyperabundance when exponential curves multiply: understanding the triple acceleration.

On January 22, 2026, Elon Musk sat down with BlackRock CEO Larry Fink at the World Economic Forum in Davos and delivered what may be the most important articulation of humanity’s near-term trajectory since the invention of the internet.

Not because Musk said anything fundamentally new—his companies have been demonstrating this reality for years—but because he connected the dots in a way that makes the path to hyperabundance undeniable.

[Watch Elon Musk’s full WEF interview]

This is not visionary speculation.

This is engineering analysis from someone building the physical infrastructure of abundance in real-time.

AI-powered intelligent 6G radio access technology significantly enhances wireless communication performance

Korea’s research community has reached an important milestone on the path toward next-generation mobile communications with the development of a technology platform that brings the 6G era closer. Researchers expect that AI-Native mobile networks, in which artificial intelligence autonomously controls and optimizes the communication system, could achieve transmission efficiencies up to 10 times higher than those of 5G.

Breakthroughs in AI-based wireless access ETRI has completed the development of AI-based wireless access technology (AI-RAN), a core foundational technology for the 6G era, and has achieved significant results in paving the way for the AI-based next-generation mobile communication era.

The biggest feature of this technology is that it has applied AI to wireless transmission, network control, and edge computing throughout the network to reliably handle large volumes of data even in ultra-dense network environments.

Harnessing nanoscale magnetic spins to overcome the limits of conventional electronics

Researchers at Kyushu University have shown that careful engineering of materials interfaces can unlock new applications for nanoscale magnetic spins, overcoming the limits of conventional electronics. Their findings, published in APL Materials, open up a promising path for tackling a key challenge in the field and ushering in a new era of next-generation information devices.

The study centers around magnetic skyrmions—swirling, nanoscale magnetic structures that behave like particles. Skyrmions possess three key features that make them useful as data carriers in information devices: nanoscale size for high capacity, compatibility with high-speed operations in the GHz range, and the ability to be moved around with very low electrical currents.

A skyrmion-based device could, in theory, surpass modern electronics in applications such as large-scale AI computing, Internet of Things (IoT), and other big data applications.

Engineers invent wireless transceiver that rivals fiber-optic speed

A new transceiver invented by electrical engineers at the University of California, Irvine boosts radio frequencies into 140-gigahertz territory, unlocking data speeds that rival those of physical fiber-optic cables and laying the groundwork for a transition to 6G and FutureG data transmission protocols.

To create the transceiver, researchers in UC Irvine’s Samueli School of Engineering devised a unique architecture that blends digital and analog processing. The result is a silicon chip system, comprising both a transmitter and a receiver, that’s capable of processing digital signals significantly faster and with much greater energy efficiency than previously available technologies.

The team from UC Irvine’s Nanoscale Communication Integrated Circuits Labs outline its work in two papers published this month in the IEEE Journal of Solid-State Circuits. In one, the engineers discuss the technology they call a “bits-to-antenna” transmitter, and in the second, they cover their “antenna-to-bits” receiver.

Too much entanglement? Quantum networks can suffer from ‘selfish routing,’ study shows

Quantum technologies, systems that process, transfer or store information leveraging quantum mechanical effects, could tackle some real-world problems faster and more effectively than their classical counterparts. In recent years, some engineers have been focusing their efforts on the development of quantum communication systems, which could eventually enable the creation of a “quantum internet” (i.e., an equivalent of the internet in which information is shared via quantum physical effects).

Networks of quantum devices are typically established leveraging quantum entanglement, a correlation that ensures that the state of one particle or system instantly relates to the state of another distant particle or system. A key assumption in the field of quantum science is that greater entanglement would be linked to more reliable communications.

Researchers at Northwestern University recently published a paper in Physical Review Letters that challenges this assumption, showing that, in some realistic scenarios, more entanglement can adversely impact the quality of communications. Their study could inform efforts aimed at building reliable quantum communication networks, potentially also contributing to the future design of a quantum internet.

Chinese military says it is developing over 10 quantum warfare weapons

China’s military says it is using quantum technology to gather high-value military intelligence from public cyberspace.

The People’s Liberation Army said more than 10 experimental quantum cyber warfare tools were “under development”, many of which were being “tested in front-line missions”, according to the official newspaper Science and Technology Daily.

The project is being led by a supercomputing laboratory at the National University of Defence Technology, according to the report, with a focus on cloud computing, artificial intelligence and quantum technology.

/* */