Toggle light / dark theme

New family of fluorescent molecules glows in water, enhancing visualization of cells

A team of researchers at the Departments of Physical Chemistry and Organic Chemistry of the University of Malaga and The Biomimetic Dendrimers and Photonic Laboratory of the research institute IBIMA Plataforma BIONAND has achieved a breakthrough that combines materials science and biomedicine. They have developed a new family of fluorescent molecules with promising applications in the study of living cells and the medicine of the future. The study has just been published in Advanced Materials.

The team of researchers has created a new family of fluorescent molecules that glow in a surprising way. These types of molecules typically lose part of their intensity or change to more dull colors when dissolved in water or other biological media. However, these new molecules do just the opposite: They emit a higher fluorescence intensity because their coloration shifts to the blue region of the light spectrum.

This behavior, which scientists described as “counterintuitive,” is key because it means that dyes work better in aqueous media like the inside of a cell, something essential for biomedical applications. In other words, they do not turn off when they are needed most but rather maintain—and even enhance—their brightness in real conditions of use.

Webb sheds more light on composition of planetary debris around nearby white dwarf

Using the James Webb Space Telescope (JWST), astronomers have performed infrared observations of a planetary debris disk around a nearby white dwarf known as GD 362. Results of the new observations, presented October 8 on the arXiv preprint server, yield important insights into the chemical composition of this disk.

White dwarfs (WDs) are stellar cores left behind after a star has exhausted its nuclear fuel. Due to their high gravity, they are known to have atmospheres of either pure hydrogen or pure helium.

However, there exists a small fraction of WDs that shows traces of heavier elements, and they are believed to be accreting planetary material. Studies of this material around WDs, which often forms dust disks, is essential to improving our knowledge of how planets form and evolve.

These Tiny Robots Can Swarm, Adapt, and Heal Themselves

Scientists designed microrobots that use sound to swarm, adapt, and heal themselves — working together like a living organism. The discovery could transform medicine, environmental cleanup, and robotics.

Nature’s Blueprint for Robot Swarms

Animals such as bats, whales, and insects have long relied on sound to communicate and find their way. Drawing inspiration from this, an international group of scientists has developed a model for tiny robots that use sound waves to move and work together in large, coordinated swarms that behave almost intelligently. According to team leader Igor Aronson, Huck Chair Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State, these robotic collectives could eventually take on challenging missions like exploring disaster areas, cleaning polluted environments, or performing medical procedures inside the human body.

A continuous totipotent-like cell-based embryo model recapitulates mouse embryogenesis from zygotic genome activation to gastrulation

The authors identify a chemical cocktail to generate totipotent-like cells, which they then use to build an embryo model. This model captures a developmental spectrum from early embryogenesis to post-implantation events.

Curved nanosheets in anode help prevent battery capacity loss during fast charging

As electric vehicles (EVs) and smartphones increasingly demand rapid charging, concerns over shortened battery lifespan have grown. Addressing this challenge, a team of Korean researchers has developed a novel anode material that maintains high performance even with frequent fast charging.

A collaborative effort by Professor Seok Ju Kang in the School of Energy and Chemical Engineering at UNIST, Professor Sang Kyu Kwak of Korea University, and Dr. Seokhoon Ahn of the Korea Institute of Science and Technology (KIST) has resulted in a hybrid anode composed of graphite and organic nanomaterials. This innovative material effectively prevents capacity loss during repeated fast-charging cycles, promising longer-lasting batteries for various applications. The findings are published in Advanced Functional Materials.

During battery charging, lithium ions (Li-ions) move into the , storing energy as Li atoms. Under rapid charging conditions, excess Li can form so-called “dead lithium” deposits on the surface, which cannot be reused. This buildup reduces capacity and accelerates battery degradation.

DNA signaling cascades offer a better way to monitor drug therapy at home

Chemists at Université de Montréal have developed “signaling cascades” made with DNA molecules to report and quantify the concentration of various molecules in a drop of blood, all within five minutes.

Their findings, validated by experiments on mice, are published in the Journal of the American Chemical Society, and may aid efforts to build point-of-care devices for monitoring and optimizing the treatment of various diseases.

This result was achieved by a research group led by UdeM chemistry professor Alexis Vallée-Bélisle.

Generation of harmful slow electrons in water is a race between intermolecular energy decay and proton transfer

When high-energy radiation interacts with water in living organisms, it generates particles and slow-moving electrons that can subsequently damage critical molecules like DNA. Now, Professor Petr Slavíček and his bachelor’s student Jakub Dubský from UCT Prague (University of Chemistry and Technology, Prague) have described in detail one of the key mechanisms for the creation of these slow electrons in water, a process known as Intermolecular Coulombic Decay (ICD). Their powerful mathematical model successfully explains all the data from complex laser experiments conducted at ETH Zurich (Hans-Jakob Woerner team).

The work, which deepens the fundamental understanding of radiation chemistry, has been published in the journal Nature Communications.

A detailed knowledge of the processes in , combined with advances in research technologies using high-energy radiation, is transforming the field of radiation chemistry. In the future, these insights could lead to significant changes in various fields, including medicine, particularly in developing more sensitive and controllable applications for devices based on ionizing radiation.

A New Way To Stop Cancer Growth: Groundbreaking Drug Enters Human Trials

Scientists have developed compounds that selectively block a crucial interaction between RAS and the enzyme PI3K, a driver of tumor growth. Scientists from the Francis Crick Institute and Vividion Therapeutics have discovered a group of chemical compounds capable of selectively stopping the inter

Quantum crystals offer a blueprint for the future of computing and chemistry

Imagine industrial processes that make materials or chemical compounds faster, cheaper, and with fewer steps than ever before. Imagine processing information in your laptop in seconds instead of minutes or a supercomputer that learns and adapts as efficiently as the human brain. These possibilities all hinge on the same thing: how electrons interact in matter.

A team of Auburn University scientists has now designed a new class of materials that gives scientists unprecedented control over these tiny particles. Their study, published in ACS Materials Letters, introduces the tunable coupling between isolated-metal molecular complexes, known as solvated electron precursors, where electrons aren’t locked to atoms but instead float freely in open spaces.

From their key role in energy transfer, bonding, and conductivity, electrons are the lifeblood of chemical synthesis and modern technology. In , electrons drive redox reactions, enable bond formation, and are critical in catalysis. In technological applications, manipulating the flow and interactions between electrons determines the operation of electronic devices, AI algorithms, photovoltaic applications, and even . In most materials, electrons are bound tightly to atoms, which limits how they can be used. But in electrides, electrons roam freely, creating entirely new possibilities.

/* */