TESSERACT has developed exquisitely sensitive transition-edge sensors that open up new searches for dark matter and have potential applications in quantum computing.
Category: cosmology
This book dives into the holy grail of modern physics: the union of quantum mechanics and general relativity. It’s a front-row seat to the world’s brightest minds (like Hawking, Witten, and Maldacena) debating what reality is really made of. Not casual reading—this is heavyweight intellectual sparring.
☼ Key Takeaways:
✅ Spacetime Is Not Continuous: It might be granular at the quantum level—think “atoms of space.”
✅ Unifying Physics: String theory, loop quantum gravity, holography—each gets a say.
✅ High-Level Debates: This is like eavesdropping on the Avengers of physics trying to fix the universe.
✅ Concepts Over Calculations: Even without equations, the philosophical depth will bend your brain.
✅ Reality Is Weirder Than Fiction: Quantum foam, time emergence, multiverse models—all explored.
This isn’t a how-to; it’s a “what-is-it?” If you’re obsessed with the ultimate structure of reality, this is your fix.
☼ Thanks for watching! If the idea of spacetime being pixelated excites you, drop a comment below and subscribe for more mind-bending content.
This Deep Dive AI podcast discusses my book The Physics of Time: D-Theory of Time & Temporal Mechanics, an insightful exploration into one of the most profound mysteries of existence: the nature of time. As part of the Science and Philosophy of Information series, this book presents a radical reinterpretation of time grounded in modern physics and digital philosophy. It questions whether time is a fundamental aspect of reality or an emergent property of consciousness and information processing. Drawing on quantum physics, cosmology, and consciousness studies, this work invites readers (and listeners) to reimagine time not as a linear, absolute entity, but as a dynamic, editable dimension intertwined with the fabric of reality itself. It challenges traditional views, blending scientific inquiry with metaphysical insights, aimed at both the curious mind and the philosophical seeker.
#PhysicofTime #TemporalMechanics #DTheory #consciousness #DigitalPresentism #TimeFlow #EmergentTime #TimeTravel #ArrowofTime #SyntellectHypothesis
In this episode, we dive deep into The Physics of Time: D-Theory of Time & Temporal Mechanics by futurist-philosopher Alex M. Vikoulov. Explore the profound questions at the intersection of consciousness, quantum and digital physics, and the true nature of time. Is time fundamental or emergent? Can we travel through it? What is Digital Presentism?
The Physics of Time: D-Theory of Time & Temporal Mechanics by Alex M. Vikoulov is an insightful exploration into one of the most profound mysteries of existence: the nature of time. As part of the Science and Philosophy of Information series, this book presents a radical reinterpretation of time grounded in modern physics and digital philosophy. It questions whether time is a fundamental aspect of reality or an emergent property of consciousness and information processing.
The book introduces the D-Theory of Time, or Digital Presentism, which suggests that all moments exist as discrete, informational states, and that our perception of time’s flow is a mental construct. Vikoulov explores theoretical models of time travel, the feasibility of manipulating time, and the concept of the Temporal Singularity, a proposed point where temporal mechanics may reach a transformative threshold.
Astronomers using the NASA/ESA/CSA James Webb Space Telescope have discovered evidence that suggests the presence of a long-sought supermassive black hole at the heart of the nearby spiral galaxy Messier 83 (M83). This surprising finding, made possible by Webb’s Mid-Infrared Instrument (MIRI), reveals highly ionized neon gas that could be a telltale signature of an active galactic nucleus (AGN), a growing black hole at the center of a galaxy.
M83, also known as the Southern Pinwheel galaxy, has long been an enigma. While massive spiral galaxies often host AGNs, astronomers have struggled for decades to confirm one in M83. Previous observations hinted that if a supermassive black hole existed there, it must be dormant or hidden behind thick dust. Now, Webb’s unprecedented sensitivity and spatial resolution have unveiled signs that suggest otherwise.
“Our discovery of highly ionized neon emission in the nucleus of M83 was unexpected,” said Svea Hernandez, lead author of the new study with AURA for the European Space Agency at the Space Telescope Science Institute in Baltimore, U.S. “These signatures require large amounts of energy to be produced—more than what normal stars can generate. This strongly suggests the presence of an AGN that has been elusive until now.”
Neutrinos, elusive fundamental particles, can act as a window into the center of a nuclear reactor, the interior of the Earth, or some of the most dynamic objects in the universe. Their tendency to change “flavors” may provide clues into the prominence of matter over antimatter in the universe or explain the existence of dark matter.
Physicists are particularly interested in proving the existence of “sterile” neutrinos. Their discovery would reveal a new form of matter that interacts only with gravity and could influence the evolution of the universe.
In a new study published in Physical Review Letters, a team of researchers from U.S. universities and national laboratories has set stringent limits on the existence and mass of sterile neutrinos. While they have yet to find the particles, they now know where not to look.
By understanding the churning region near singularities, physicists hope they might be able to reconcile gravity and quantum mechanics.
From the universe’s age to “missing link” black holes, Hubble’s mysteries range from big to bigger.
The planned MUonE experiment could—in addition to studying the muon’s magnetic moment—search for dark matter particles.
Researchers from the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS) have proposed a key indicator that may reveal the emergence of quark-gluon plasma (QGP) by analyzing particle “fingerprints” generated in heavy-ion collisions.
Published in Physics Letters B, the study provides a new perspective for exploring the evolution of matter in the early universe.
About 13.8 billion years ago, within a millionth of a second after the Big Bang, the universe existed in an ultra-hot and dense state. Instead of protons and neutrons, the fundamental building blocks of matter were free quarks and gluons—a unique state known as QGP. As the universe expanded and cooled, the QGP gradually condensed into the atomic nuclei we recognize today.