Toggle light / dark theme

The gravitino: A new candidate for dark matter

Dark matter remains one of the biggest mysteries in fundamental physics. Many theoretical proposals (axions, WIMPs) and 40 years of extensive experimental searches have failed to provide any explanation of the nature of dark matter.

Several years ago, in a theory unifying and gravity, new, radically different candidates were proposed: superheavy charged gravitinos.

Now, a paper published in Physical Review Research by scientists from the University of Warsaw and Max Planck Institute for Gravitational Physics shows how new underground detectors, in particular the JUNO detector starting soon to take data, even though designed for neutrino physics, are also extremely well suited to eventually detect charged dark matter gravitinos.

The Hunt for Dark Matter Has a New, Surprising Target

Dark Matter remains one of the biggest mysteries in fundamental physics. Many theoretical proposals (axions, WIMPs) and 40 years of extensive experimental search have not explained what Dark Matter is. Several years ago, a theory that seeks to unify particle physics and gravity introduced a radically different possibility: superheavy, electrically charged gravitinos as Dark Matter candidates.

A recent paper in Physical Review Research by scientists from the University of Warsaw and the Max Planck Institute for Gravitational Physics shows that new underground detectors, in particular the JUNO detector that will soon begin taking data, are well-suited to detect charged Dark Matter gravitinos even though they were designed for neutrino physics. Simulations that bridge elementary particle physics with advanced quantum chemistry indicate that a gravitino would leave a signal in the detector that is unique and unambiguous.

In 1981, Nobel Prize laureate Murray Gell-Mann, who introduced quarks as fundamental constituents of matter, observed that the particles of the Standard Model—quarks and leptons—appear within a purely mathematical theory formulated two years earlier: N=8 supergravity, noted for its maximal symmetry. N=8 supergravity includes, in addition to the Standard Model matter particles of spin 1/2, a gravitational sector with the graviton (of spin 2) and 8 gravitinos of spin 3/2. If the Standard Model is indeed connected to N=8 supergravity, this relationship could point toward a solution to one of the hardest problems in theoretical physics — unifying gravity with particle physics. In its spin ½ sector, N=8 supergravity contains exactly 6 quarks (u, d, c, s, t, b) and 6 leptons (electron, muon, taon and neutrinos), and it forbids any additional matter particles.

Scientists just found the hidden cosmic fingerprints of dark matter

Scientists at Rutgers and collaborators have traced the invisible dark matter scaffolding of the universe using over 100,000 Lyman-alpha emitting galaxies. By studying how these galaxies clustered across three eras shortly after the Big Bang, they mapped dark matter concentrations, uncovering cosmic “fingerprints” that reveal how galaxies grow and evolve.

Plasmon effects in neutron star magnetospheres could pose new limits on the detection of axions

Dark matter is an elusive type of matter that does not emit, reflect or absorb light, yet is predicted to account for most of the universe’s mass. As it cannot be detected and studied using conventional experimental techniques, the nature and composition of dark matter have not yet been uncovered.

One of the most promising candidates (i.e., hypothetical particles that dark matter could be made of) are axions. Theory suggests that axions could convert into light particles (i.e., photons) under specific conditions, which could in turn generate signals that can be picked up by sophisticated equipment.

In , such as those surrounding neutron stars with large magnetic fields (i.e., magnetars), the conversion of axions into photons has been predicted to generate weak radio signals that could be detected using powerful Earth-based or space-based radio telescopes.

Primordial black hole’s final burst may solve neutrino mystery

The last gasp of a primordial black hole may be the source of the highest-energy “ghost particle” detected to date, a new MIT study proposes.

In a paper appearing today in Physical Review Letters, MIT physicists put forth a strong theoretical case that a recently observed, highly energetic neutrino may have been the product of a primordial black hole exploding outside our solar system.

Neutrinos are sometimes referred to as ghost particles, for their invisible yet pervasive nature: They are the most abundant particle type in the universe, yet they leave barely a trace. Scientists recently identified signs of a neutrino with the highest energy ever recorded, but the source of such an unusually powerful particle has yet to be confirmed.

Shape-shifting collisions offer new tool for studying early matter produced in Big Bang’s aftermath

This summer, the Large Hadron Collider (LHC) took a breath of fresh air. Normally filled with beams of protons, the 27-km ring was reconfigured to enable its first oxygen–oxygen and neon–neon collisions. First results from the new data, recorded over a period of six days by the ALICE, ATLAS, CMS and LHCb experiments, were presented during the Initial Stages conference held in Taipei, Taiwan, on 7–12 September.

Smashing into one another allows physicists to study the quark–gluon plasma (QGP), an extreme state of matter that mimics the conditions of the universe during its first microseconds, before atoms formed. Until now, exploration of this hot and dense state of free particles at the LHC relied on collisions between (like lead or xenon), which maximize the size of the plasma droplet created.

Collisions between lighter ions, such as oxygen, open a new window on the QGP to better understand its characteristics and evolution. Not only are they smaller than lead or xenon, allowing a better investigation of the minimum size of nuclei needed to create the QGP, but they are less regular in shape. A neon nucleus, for example, is predicted to be elongated like a bowling pin—a picture that has now been brought into sharper focus thanks to the new LHC results.

/* */