Toggle light / dark theme

I wondered when this would start!

“This means that should everything go according to plan, the humanoid robot will eventually be put to work building itself.” 🤖 🤖


Apptronik, an Austin-based maker of humanoid robots, on Tuesday announced a new pilot partnership with American supply chain/manufacturing stalwart, Jabil. The deal arrives two weeks after Apptronik announced a $350 million Series A financing round aimed at scaling up production of its Apollo robot.

The Jabil deal is the second major pilot announced by Apptronik. It follows a March 2024 partnership that put Apollo to work on the Mercedes-Benz manufacturing floor. While the company tells TechCrunch that its partnership with the automaker is ongoing, it has yet to graduate beyond the pilot stage.

Measurements and data collected from space can be used to better understand life on Earth.

An ambitious, multinational research project funded by NASA and co-led by UC Merced civil and environmental engineering Professor Erin Hestir demonstrated that Earth’s biodiversity can be monitored and measured from space, leading to a better understanding of terrestrial and aquatic ecosystems. Hestir led the team alongside University of Buffalo geography Professor Adam Wilson and Professor Jasper Slingsby from the University of Cape Town on BioSCape, which collected data over six weeks in late 2024.

Two NASA aircraft and one South African aircraft flew over South Africa’s Greater Cape Floristic Region — one of the most biodiverse places on the planet — to collect ultraviolet, visual, thermal and other images. That data, combined with field work by the large team of scientists from the United States and South Africa, provides a comprehensive look at the region’s biodiversity, or life systems.

Optical atomic clocks can increase the precision of time and geographic position a thousandfold in our mobile phones, computers, and GPS systems. However, they are currently too large and complex to be widely used in society.

Now, a research team from Purdue University, U.S., and Chalmers University of Technology, Sweden, has developed a technology that, with the help of on-chip microcombs, could make ultra-precise optical atomic clock systems significantly smaller and more accessible—with significant benefits for navigation, autonomous vehicles, and geo-data monitoring.

The research is published in the journal Nature Photonics.

EMBL tech developers have made an important leap forward with a novel methodology that adds an important microscopy capability to life scientists’ toolbox. The advance represents a 1,000-fold improvement in speed and throughput in Brillouin microscopy and provides a way to view light-sensitive organisms more efficiently.

“We were on a quest to speed up ,” said Carlo Bevilacqua, optical engineer in EMBL’s Prevedel team and lead author on a paper published about this in Nature Photonics.

“Over the years, we have progressed from being able to see just a pixel at a time to a line of 100 pixels, to now a full plane that offers a view of approximately 10,000 pixels.”

Plastic that conducts electricity might sound impossible. But there is a special class of materials known as “electronic polymers” that combines the flexibility of plastic with the functionality of metal. This type of material opens the door for breakthroughs in wearable devices, printable electronics and advanced energy storage systems.

Yet, making thin films from electronic polymers has always been a difficult task. It takes a lot of fine-tuning to achieve the right balance of physical and . Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have created an innovative solution to this challenge with artificial intelligence (AI).

They used an AI-driven, automated materials laboratory, a tool called Polybot, to explore processing methods and produce high-quality films. Polybot is located at the Center for Nanoscale Materials, a DOE Office of Science user facility at Argonne.

Everyone is talking about AI. Do you think it will surpass human intelligence? And what consequences will this have?

We need to focus primarily on how artificial intelligence will transform the workforce and job market. For instance, AI will be a key component of humanoid robots’ brains. Tesla is already producing them, and I believe that within the next 5 years, every automotive company is likely to produce their own version. This makes sense because automotive companies already have the assembly lines and engineering expertise to produce all the small components needed to build them. We’re already amazed by what AI can do today—imagine what it will do in 5 or 10 years, and then think about what it could do when integrated into a humanoid robot. It’s already confirmed through commercial orders with current manufacturers that major fast-food franchise chains and other chains, for example, in the transportation sector, will test humanoid robots within their processes. AI is already skilled in programming tasks and will soon be able to enhance itself.

When discussing motors, most people think of those in vehicles or machines. However, biological motors have existed for millions of years in microorganisms. Many bacteria use tail-like structures called flagella, which rotate to propel them through fluids. This movement is driven by a protein complex known as the flagellar motor.

The flagellar motor has two key components: the rotor and the stators. The rotor, a large rotating structure anchored to the cell membrane, drives flagellum movement. The stators, smaller structures surrounding the rotor, contain ion pathways that transport protons or sodium ions, depending on the bacterial species.

A species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms.

In today’s AI news, Backed by $200 million in funding, Scott Wu and his team at Cognition are building an AI tool that could potentially disintegrate the whole industry, at a $2 Billion valuation. Devin is an autonomous AI agent that, in theory, writes the code itself—no people involved—and can complete entire projects typically assigned to developers.

In other advancements, OpenAI is changing how it trains AI models to explicitly embrace “intellectual freedom … no matter how challenging or controversial a topic may be,” the company says in a new policy. OpenAI is releasing a significantly expanded version of its Model Spec, a document that defines how its AI models should behave — and is making it free for anyone to use or modify.

Then, xAI, the artificial intelligence company founded by Elon Musk, is set to launch Grok 3 on Monday, Feb. 17. According to xAI, this latest version of its chatbot, which Musk describes as “scary smart,” represents a major step forward, improving reasoning, computational power and adaptability. Grok 3’s development was accelerated by its Colossus supercomputer, which was built in just eight months, powered by 100,000 Nvidia H100 GPUs.

And, large language models can learn complex reasoning tasks without relying on large datasets, according to a new study by researchers at Shanghai Jiao Tong University. Their findings show that with just a small batch of well-curated examples, you can train an LLM for tasks that were thought to require tens of thousands of training instances.

S new o1 model, which focuses on slower, more deliberate reasoning — much like how humans think — in order to solve complex problems. ” + Then, join Turing Award laureate Yann LeCun—Chief AI Scientist at Meta and Professor at NYU—as he discusses with Link Ventures’ John Werner, the future of artificial intelligence and how open-source development is driving innovation. In this wide-ranging conversation, LeCun explains why AI systems won’t “take over” but will instead serve as empowering assistants.