Toggle light / dark theme

Dementia with Lewy Bodies (DLB), Parkinson’s disease (PD) and PD dementia (PDD) are neurodegenerative syndromes that are characterized neuropathologically by Lewy body disease (LBD), including Lewy bodies in neuronal somata and Lewy neurites in axons or dendrites. Intraneuronal aggregates of tau called neurofibrillary tangles (NFTs) classically are associated with Alzheimer’s disease (AD), yet NFTs often are observed with LBD as well [40]. PDD patients have a higher burden of NFTs in the cortex compared to PD patients without dementia, and cortical tau aggregates correlate with cognitive impairment severity [15, 21, 22]. Mouse models of LBD implicate an α-syn-tau interaction. In mice overexpressing A53T mutant human α-syn, knocking out tau or using antibodies targeting oligomeric tau reverses memory impairments [19, 39]. Thus, the presence of both Lewy and tau pathology may contribute to cognitive symptoms from LBD.

Endogenous tau and α-synuclein colocalize and associate in neurons [42], suggesting that co-pathology may arise from synergistic interactions. Indeed, in vitro experiments show that tau’s microtubule binding domain also binds the C-terminus of α-syn, resulting in the fibrillization and aggregation of both proteins [17, 20]. In addition, human postmortem studies report colocalization between tau and synuclein using various antibody combinations. LBD colocalizes with tau in brainstem Sect. [2], hippocampus [3], entorhinal cortex [23], frontal cortex [38], amygdala [37, 43], and olfactory bulb [18]. One study quantified the number of double-positive neurons across hippocampal structures and determined the subiculum and pre-CA1 neurons had the highest proportion for double-positivity with a range of 1–13% across 5 subjects, as assessed by examining neuronal somata [24]. In another study that focused on brainstem Lewy bodies, as many as a third of Lewy bodies in the medulla were immunoreactive for phosphorylated tau, but a relationship between tau and α-syn immunoreactivity within abundant Lewy neurites has not been examined [25]. In addition, many of the studies showing overlap of α-syn and tau pathology are qualitative or relied on counting colocalization by eye in single images rather than quantifying colocalization over a larger area within the tissue.

Investigating overlap of pathologic α-syn and tau in structures including neurites is important because synaptic and axonal dysfunction are earlier pathophysiologic events in LBD than the formation of Lewy bodies, and cortical and limbic regions affected by α-synucleinopathy show more abundant Lewy neurites than Lewy bodies. We examined postmortem middle temporal gyrus cortex from human brains with confirmed LBD using immunofluorescence and confocal microscopy. We first quantified the degree of abnormal forms of α-syn and tau as well as immunologic markers for this region, showing an association of disease markers with the neuropathological diagnosis of LBD, demonstrating these cases recapitulate prior findings from the literature. We then measured colocalization of pathologic α-syn with phosphorylated tau, and an early pathologic form of tau.

Stefanie Mueller is a prominent computer scientist and associate professor at CSAIL and EECS, MIT. Known for her research in the field of human-computer interaction (HCI) and digital fabrication. Her work focuses on designing and developing novel interactive systems and fabrication techniques that enable users to create personalized and customizable physical objects, advancing the field of HCI and bridging the gap between the digital and physical worlds.

Fuel your success with Forbes. Gain unlimited access to premium journalism, including breaking news, groundbreaking in-depth reported stories, daily digests and more. Plus, members get a front-row seat at members-only events with leading thinkers and doers, access to premium video that can help you get ahead, an ad-light experience, early access to select products including NFT drops and more:

https://account.forbes.com/membership

Stay Connected.

On the positive side, some human entrepreneurs could become very wealthy, possibly trillionaires if they could tap into these AI’s wealth somehow. Additionally, super rich AIs could be a solution to the United States’ growing debt crisis, and eliminate the need for whether countries like China can continue to buy our debt so we can indefinitely print dollars. In fact, can America launch its own AI agents to create enough crypto wealth to buy its debt?

Naturally, the risk is that these AIs might eventually try to buy other financial instruments, like existing bonds and stocks. But it’s unlikely they’d be able to do so, unless more of the U.S.’ economy went into crypto and became blockchain based. Additionally, AI bots aren’t allowed to have traditional bank accounts yet.

Whatever happens, clearly there is an urgent need for the U.S. government to address such potentialities. Given that these AIs could start to proliferate in the next few months, I suggest Congress and the Trump administration immediately convene a special task force to specifically tackle the possibility of an AI Monetary Hegemony.

The real danger is that even with regulation, programmers will still be able to release autonomous AIs into the wild—just as many illegal things already happen on the web despite the existence of laws. Programmers might release these types of AIs for kicks, while others try to profit from it—and some may even do so even as a form of terrorism to try to hamper the world economy. Whatever the reason, the creation of autonomous AIs will soon be a reality of life. And vigilance and foresight will be needed as these new AIs start to autonomously disrupt our financial future.

Alzheimer’s disease (AD) is defined by synaptic and neuronal degeneration and loss accompanied by amyloid beta (Aβ) plaques and tau neurofibrillary tangles (NFTs)1,2,3. In vivo animal experiments indicate that both Aβ and tau pathologies synergistically interact to impair neuronal circuits4. For example, the hypersynchronous epileptiform activity observed in over 60% of AD cases5 may be generated by surrounding Aβ and/or tau deposition yielding neuronal network hyperactivity5,6. Cortical and hippocampal network hyperexcitability precedes memory impairment in AD models7,8. In an apparent feedback loop, endogenous neuronal activity, in turn, regulates Aβ aggregation, in both animal models and computational simulations9,10. Multiple other factors involved in AD pathogenesis-remarkably, neuroinflammatory dysregulations-also seemingly influence neuronal firing and act on hypo/hyperexcitation patterns11,12,13. Thus, mounting evidence suggest that neuronal excitability changes are a key mechanistic event appearing early in AD and a tentative therapeutic target to reverse disease symptoms3,4,7,14. However, the exact patterns of Aβ, tau and other disease factors’ neuronal activity alterations in AD’s neurodegenerative progression are unclear as in vivo and non-invasive measuring of neuronal excitability in human subjects remains impractical.

Brain imaging and electrophysiological monitoring constitute a reliable readout for brain network degeneration likely associating with AD’s neuro-functional alterations3,15,16,17,18. Patients present distinct resting-state blood-oxygen-level-dependent (BOLD) signal content in the low frequency fluctuations range (0.01–0.08 Hz)16,19. These differences increase with disease progression, from cognitively unimpaired (CU) controls to mild cognitive impairment (MCI) to AD, correlating with performance on cognitive tests16. Another characteristic functional change is the slowing of the electro-(magneto-) encephalogram (E/MEG), with the signal shifting towards low frequency bands15,18. Electrophysiological spectral changes associate with brain atrophy and with losing connections to hub regions including the hippocampus, occipital and posterior areas of the default mode network20. All these damages are known to occur in parallel with cognitive impairment20. Disease processes also manifest differently given subject-specific genetic and environmental conditions1,21. Models of multiple pathological markers and physiology represent a promising avenue for revealing the connection between individual AD fingerprints and cognitive deficits3,18,22.

In effect, large-scale neuronal dynamical models of brain re-organization have been used to test disease-specific hypotheses by focusing on the corresponding causal mechanisms23,24,25. By considering brain topology (the structural connectome18) and regional profiles of a pathological agent24, it is possible to recreate how a disorder develops, providing supportive or conflicting evidence on the validity of a hypothesis23. Generative models follow average activity in relatively large groups of excitatory and inhibitory neurons (neural masses), with large-scale interactions generating E/MEG signals and/or functional MRI observations26. Through neural mass modeling, personalized virtual brains were built to describe Aβ pathology effects on AD-related EEG slowing25 and several hypotheses for neuronal hyperactivation have been tested27. Simulated resting-state functional MRI across the AD spectrum was used to estimate biophysical parameters associated with cognitive deterioration28. In addition, different intervention strategies to counter neuronal hyperactivity in AD have been tested10,22. Notably, comprehensive computational approaches combining pathophysiological patterns and functional network alterations allow the quantification of non-observable biological parameters29 like neuronal excitability values in a subject-specific basis1,3,18,21,23,24, facilitating the design of personalized treatments targeting the root cause(s) of functional alterations in AD.

Trump—flanked by larry ellison, sam altman, & masayoshi son—announces project stargate.

Trump announces Project Stargate, a $500 billion initiative backed by major tech leaders, aimed at revolutionizing U.S. AI infrastructure, creating jobs, and enhancing healthcare through advanced technologies. AI Infrastructure and Economic Impact.

🏗️Project Stargate, a $500+ billion AI infrastructure initiative, aims to construct colossal data centers and physical campuses across the US, potentially creating over 100,000 American jobs.

🌐The project will build physical and virtual infrastructure to power next-generation AI advancements, with Oracle, SoftBank, and Microsoft as key partners, establishing a new US-centered industry. ## Healthcare Applications.

Blockchain technology offers a solution to this issue by storing all your documents and identification records on a network. The tech can theoretically ensure such documents are securely stored, easily accessible, and protected from unauthorized alterations.

Blockchain has already been used for identification in real-world scenarios. For example, during the Syrian refugee crisis, blockchain technology was used to record the identities of refugees securely. It also facilitated the management of financial aid and grocery purchases, enabling refugees to access necessary resources without any hurdles.

Today I have the pleasure of speaking with a visionary thinker and innovator who’s making waves in the world of artificial intelligence and the future of human health. Dr. Ben Goertzel is the founder and CEO of SingularityNET, a decentralized AI platform that aims to democratize access to advanced artificial intelligence. He’s also the mind behind OpenCog, an open-source project dedicated to developing artificial general intelligence, and he’s a key figure at Hanson Robotics, where he helped create the well-known AI robot, Sophia.

Beyond AI, Dr. Goertzel is deeply involved in exploring how technology can enhance human longevity, contributing to initiatives like Rejuve, which aims to leverage AI and blockchain to advance life extension research. With a career that spans cognitive science, AI development, and innovative health tech, Dr. Goertzel is shaping the future in ways that will impact all of us. Please join me in welcoming Dr. Ben Goertzel!

PRODUCTION CREDITS
⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺
Host, Writer — @emmettshort.
Executive Producer — Keith Comito

This episode is sponsored by Legal Zoom.

Launch, run, and protect your business to make it official TODAY at https://www.legalzoom.com/ and use promo code Smith10 to get 10% off any LegalZoom business formation product excluding subscriptions and renewals.

In this episode of the Eye on AI podcast, we dive into the world of Artificial General Intelligence (AGI) with Ben Goertzel, CEO of SingularityNET and a leading pioneer in AGI development.

Ben shares his vision for building machines that go beyond task-specific capabilities to achieve true, human-like intelligence. He explores how AGI could reshape society, from revolutionizing industries to redefining creativity, learning, and autonomous decision-making.

A team of cybersecurity researchers at Stony Brook University has uncovered a new way for scammers to steal from unsuspecting cryptocurrency users. They have posted a paper to the arXiv preprint server describing the new crypto scam and how users can protect themselves.

Cryptocurrency is a type of digital currency run on a secure online platform. One example is Coinbase. Crypto currency is stored in a crypto wallet. In this new study, the team in New York reports that scammers have found a way to get people to redirect crypto payments away from intended recipients and toward wallets held by the scammers.

The researchers call the scam typosquatting. It involves setting up Blockchain Naming Systems (BNS) that are similar to those used by well-known entities. It exploits the use of simple word-based addresses rather than the complicated and hard-to-remember letter and digit codes commonly associated with crypto wallets.