Dark matter is an elusive type of matter that does not emit, reflect or absorb light, yet is estimated to account for most of the universe’s mass. Over the past decades, many physicists worldwide have been trying to detect this type of matter or signals associated with its presence, employing various approaches and technologies.
As it has never been directly detected before, the composition and properties of dark matter remain mostly unknown. Initially, dark matter searches focused on the detection of relatively heavy particles. More recently, however, physicists also started looking for lighter particles with masses below one giga-electron-volt (GeV), which would thus be lighter than protons.
Researchers at SLAC National Accelerator Laboratory and The Ohio State University recently showed that signatures of these sub-GeV dark matter particles could also be picked up by neutrino observatories, large underground detectors originally designed to study neutrinos (i.e., light particles that weakly interact with regular matter).









