Toggle light / dark theme

Synthetic ‘killswitch’ uncovers hidden world of cellular condensates

Researchers at the Max Planck Institute for Molecular Genetics have developed a novel synthetic micropeptide termed the “killswitch” to selectively immobilize proteins within cellular condensates, unveiling crucial connections between condensate microenvironments and their biological functions.

Biomolecular condensates are specialized regions inside cells, existing without membranes, where critical biochemical reactions occur. Their importance in health and disease is well established, including roles in cancer progression and viral infection.

Methods to precisely probe and manipulate condensates in living cells remain limited. Existing strategies lack specificity, either dissolving condensates indiscriminately or requiring artificial protein overexpression, which obscures the natural behavior of native cellular proteins.

Excessive oleic acid, found in olive oil, shown to drive fat cell growth

Eating a high-fat diet containing a large amount of oleic acid—a type of fatty acid commonly found in olive oil—could drive obesity more than other types of dietary fats, according to a study published in the journal Cell Reports.

The study found that oleic acid, a monounsaturated fat associated with obesity, causes the body to make more fat cells. By boosting a signaling protein called AKT2 and reducing the activity of a regulating protein called LXR, high levels of oleic acid resulted in faster growth of the precursor cells that form new fat cells.

“We know that the types of fat that people eat have changed during the obesity epidemic. We wanted to know whether simply overeating a diet rich in fat causes obesity, or whether the composition of these fatty acids that make up the oils in the diet is important. Do specific fat molecules trigger responses in the cells?” said Michael Rudolph, Ph.D., assistant professor of biochemistry and physiology at the University of Oklahoma College of Medicine and member of OU Health Harold Hamm Diabetes Center.

Two brain cell types that determine whether smells are pleasant or unpleasant identified

You wouldn’t microwave fish around your worst enemy—the smell lingers both in kitchen and memory. It is one few of us like, let alone have positive associations with. But what makes our brains decide a smell is stinky?

A new study from UF Health researchers reveals the mechanisms behind how your brain decides you dislike—even loathe—a smell. The findings are published in the journal Molecular Psychiatry.

Or as first author and graduate research fellow Sarah Sniffen puts it: How do odors come to acquire some sort of emotional charge?

Iron powder outperforms activated carbon as adsorbent for PFOS—even when it rusts

PFOS, also known as “forever chemicals,” are synthetic compounds popular for several commercial applications, like making products resistant to stains, fire, grease, soil and water. They have been used in non-stick cookware, carpets, rugs, upholstered furniture, food packaging and firefighting foams deployed at airports and military airfields.

PFOS (perfluorooctane sulfonate or perfluorooctane ) are part of the larger class of forever chemicals called PFAS (per-and polyfluoroalkyl substances.) Both types have been linked to a variety of health issues, including , immune system malfunction, developmental issues and cancer.

Because of their widespread use, PFOS are found in soil, agricultural products and drinking water sources, presenting a health risk. Xiaoguang Meng and Christos Christodoulatos, professors at the Department of Civil, Environmental and Ocean Engineering at Stevens Institute of Technology, and Ph.D. student Meng Ji working in their lab, wanted to identify the most efficient way to remove these toxins from the water.

Sleep loss rewires the brain for cravings and weight gain. A neurologist explains the science behind the cycle

You stayed up too late scrolling through your phone, answering emails or watching just one more episode. The next morning, you feel groggy and irritable. That sugary pastry or greasy breakfast sandwich suddenly looks more appealing than your usual yogurt and berries. By the afternoon, chips or candy from the break room call your name. This isn’t just about willpower. Your brain, short on rest, is nudging you toward quick, high-calorie fixes.

There is a reason why this cycle repeats itself so predictably. Research shows that insufficient sleep disrupts hunger signals, weakens self-control, impairs glucose metabolism and increases your risk of weight gain. These changes can occur rapidly, even after a single night of poor sleep, and can become more harmful over time if left unaddressed.

I am a neurologist specializing in sleep science and its impact on health.

New opioid testing techniques could lead to better therapies

As the opioid epidemic persists across the United States, a team of researchers from Brown University has developed new diagnostic techniques for detecting opioid compounds in adults with opioid use disorder and infants with neonatal abstinence syndrome.

The new techniques, described in two recently published research studies, could equip with powerful new tools for more effectively treating conditions related to opioid exposure, the researchers say.

In a study published in Scientific Reports, the researchers describe a method that can rapidly detect six different opioid compounds from a tiny amount of serum—no more than a finger prick.