Archive for the ‘information science’ category

Nov 29, 2023

Dark matter could help solve the final parsec problem of black holes

Posted by in categories: computing, cosmology, information science, physics

When galaxies collide, their supermassive black holes enter into a gravitational dance, gradually orbiting each other ever closer until eventually merging. We know they merge because we see the gravitational beasts that result, and we have detected the gravitational waves they emit as they inspiral. But the details of their final consummation remain a mystery. Now a new paper published on the pre-print server arXiv suggests part of that mystery can be solved with a bit of dark matter.

Just as the famous three-body problem has no general analytical solution for Newtonian gravity, the two-body problem has no general solution in . So, we have to resort to to model how black holes orbit each other and eventually merge.

For that are relatively widely separated, our simulations work really well, but when black holes are close to each other things get complicated. Einstein’s equations are very nonlinear, and modeling the dynamics of strongly interacting black holes is difficult.

Nov 28, 2023

Researchers engineer a material that can perform different tasks depending on temperature

Posted by in categories: 3D printing, information science, robotics/AI

Researchers report that they have developed a new composite material designed to change behaviors depending on temperature in order to perform specific tasks. These materials are poised to be part of the next generation of autonomous robotics that will interact with the environment.

The new study conducted by University of Illinois Urbana-Champaign civil and environmental engineering professor Shelly Zhang and graduate student Weichen Li, in collaboration with professor Tian Chen and graduate student Yue Wang from the University of Houston, uses , two distinct polymers, and 3D printing to reverse engineer a material that expands and contracts in response to change with or without .

Continue reading “Researchers engineer a material that can perform different tasks depending on temperature” »

Nov 28, 2023

OpenAI CEO Sam Altman Says His Company Is Now Building GPT-5

Posted by in categories: information science, robotics/AI

At an MIT event in March, OpenAI cofounder and CEO Sam Altman said his team wasn’t yet training its next AI, GPT-5. “We are not and won’t for some time,” he told the audience.

This week, however, new details about GPT-5’s status emerged.

In an interview, Altman told the Financial Times the company is now working to develop GPT-5. Though the article did not specify whether the model is in training—it likely isn’t—Altman did say it would need more data. The data would come from public online sources—which is how such algorithms, called large language models, have previously been trained—and proprietary private datasets.

Nov 27, 2023

Team uses gold nanowires to develop wearable sensor that measures two bio-signals

Posted by in categories: biotech/medical, chemistry, information science, nanotechnology, wearables

A research team led by Professor Sei Kwang Hahn and Dr. Tae Yeon Kim from the Department of Materials Science and Engineering at Pohang University of Science and Technology (POSTECH) used gold nanowires to develop an integrated wearable sensor device that effectively measures and processes two bio-signals simultaneously. Their research findings were featured in Advanced Materials.

Wearable devices, available in various forms like attachments and patches, play a pivotal role in detecting physical, chemical, and electrophysiological signals for disease diagnosis and management. Recent strides in research focus on devising wearables capable of measuring multiple bio-signals concurrently.

However, a major challenge has been the disparate materials needed for each signal measurement, leading to interface damage, complex fabrication, and reduced device stability. Additionally, these varied signal analyses require further signal processing systems and algorithms.

Nov 27, 2023

Researchers achieve zero-knowledge proof based on device-independent quantum random number beacon

Posted by in categories: blockchains, encryption, information science, quantum physics, security

Zero-knowledge proof (ZKP) is a cryptographic tool that allows for the verification of validity between mutually untrusted parties without disclosing additional information. Non-interactive zero-knowledge proof (NIZKP) is a variant of ZKP with the feature of not requiring multiple information exchanges. Therefore, NIZKP is widely used in the fields of digital signature, blockchain, and identity authentication.

Since it is difficult to implement a true random number generator, deterministic pseudorandom number algorithms are often used as a substitute. However, this method has potential security vulnerabilities. Therefore, how to obtain true random numbers has become the key to improving the security of NIZKP.

In a study published in PNAS, a research team led by Prof. Pan Jianwei and Prof. Zhang Qiang from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences, and the collaborators, realized a set of random number beacon public services with device-independent quantum as entropy sources and post-quantum cryptography as identity authentication.

Nov 26, 2023

Quantum Advantage: A Physicist Explains The Future of Computers

Posted by in categories: computing, encryption, information science, quantum physics

Quantum advantage is the milestone the field of quantum computing is fervently working toward, where a quantum computer can solve problems that are beyond the reach of the most powerful non-quantum, or classical, computers.

Quantum refers to the scale of atoms and molecules where the laws of physics as we experience them break down and a different, counterintuitive set of laws apply. Quantum computers take advantage of these strange behaviors to solve problems.

Continue reading “Quantum Advantage: A Physicist Explains The Future of Computers” »

Nov 26, 2023

Japan firm uses telecom AI to detect flaws in nuclear fusion reactor

Posted by in categories: information science, nuclear energy, robotics/AI, surveillance

Japan’s Nippon Telegraph and Telephone Corporation (NTT) is applying its Deep Anomaly Surveillance (DeAnoS) artificial intelligence tool, originally designed for telecom networks, to predict anomalies in nuclear fusion reactors.

DeAnoS is like a detective, trying to understand which part of the equation is making things weird.

Atomic fusion reactors are at the forefront of scientific innovation, harnessing the enormous energy released by atomic nuclei fusion. This process, which is similar to the Sun’s power source, involves the union of two light atomic nuclei, which results in the development of a heavier nucleus and the release of a massive quantity of energy.

Nov 26, 2023

Google’s DeepMind AI can make better weather forecasts than supercomputers

Posted by in categories: information science, robotics/AI, supercomputing

DeepMind’s new machine learning algorithm takes less than a minute to make its forecasts and can run on a desktop. But it won’t replace traditional forecasts anytime soon.

Nov 26, 2023

The Fermi Paradox Compendium of Solutions & Terms

Posted by in categories: asteroid/comet impacts, existential risks, information science, media & arts, neuroscience, singularity, sustainability, time travel, virtual reality

Go to to get 20 to 50% off sitewide! Brought to you by Raycon.
In the grand theater of the cosmos, amidst a myriad of distant suns and ancient galaxies, the Fermi Paradox presents a haunting silence, where a cacophony of alien conversations should exist. Where is Everyone? Or are we alone?

Visit our Website:
Join Nebula:
Support us on Patreon:
Support us on Subscribestar:
Facebook Group:
Twitter: on Twitter and RT our future content.
SFIA Discord Server:

Continue reading “The Fermi Paradox Compendium of Solutions & Terms” »

Nov 25, 2023

Gödel’s incompleteness theorems don’t rule out artificial intelligence

Posted by in categories: information science, quantum physics, robotics/AI

I’ve posted a number of times about artificial intelligence, mind uploading, and various related topics. There are a number of things that can come up in the resulting discussions, one of them being Kurt Gödel’s incompleteness theorems.

The typical line of arguments goes something like this: Gödel implies that there are solutions that no algorithmic system can accomplish but that humans can accomplish, therefore the computational theory of mind is wrong, artificial general intelligence is impossible, and animal, or at least human minds require some as of yet unknown physics, most likely having something to do with the quantum wave function collapse (since that remains an intractable mystery in physics).

Continue reading “Gödel’s incompleteness theorems don’t rule out artificial intelligence” »

Page 1 of 27512345678Last