September’s partial solar eclipse was not just caught by eager skywatchers on Earth but also by satellites orbiting high above.

A team of scientists has detected a colossal geological anomaly, a massive and mysterious change that took place nearly 2,900 kilometers deep, right at the boundary between the Earth’s mantle and the core, an event that measurably altered the planet’s gravitational field and that has been captured, indirectly but unequivocally, by instruments in orbit.
The finding, published last month in the journal Geophysical Research Letters, suggests that the structure of rocks in the depths of the lower mantle can transform dynamically, a process that could have fundamental implications for our understanding of planetary dynamics, from the origin of major earthquakes to the generation of the magnetic field that protects life on the surface.
The research, led by Charlotte Gaugne Gouranton of the City University of Paris and with the notable participation of geophysicist Isabelle Panet of Gustave Eiffel University, focused on the meticulous analysis of data collected by the GRACE (Gravity Recovery and Climate Experiment) satellite mission, a joint project between the United States and Germany that operated between 2002 and 2017.
After decades of relying on aging satellites, NOAA is launching a purpose-built eye on the sun.
Scientists at NYU Abu Dhabi (NYUAD) have developed an artificial intelligence (AI) model that can forecast solar wind speeds up to four days in advance, significantly more accurately than current methods. The study is published in The Astrophysical Journal Supplement Series.
Solar wind is a continuous stream of charged particles released by the sun. When these particles speed up, they can cause “space weather” events that disrupt Earth’s atmosphere and drag satellites out of orbit, damage their electrons, and interfere with power grids. In 2022, a strong solar wind event caused SpaceX to lose 40 Starlink satellites, showing the urgent need for better forecasting.
The NYUAD team, led by Postdoctoral Associate Dattaraj Dhuri and Co-Principal Investigator at the Center for Space Science (CASS) Shravan Hanasoge, trained their AI model using high-resolution ultraviolet (UV) images from NASA’s Solar Dynamics Observatory, combined with historical records of solar wind.
“Surface charging may occur on satellite components, drag may increase on low-Earth-orbit satellites, and corrections may be needed for orientation problems,” the NOAA explains of G3 storms, adding “Intermittent satellite navigation and low-frequency radio navigation problems may occur, HF radio may be intermittent, and aurora has been seen as low as Illinois and Oregon (typically 50° geomagnetic lat.).”
Sun activity increases and decreases in an 11-year cycle known as the Schwabe cycle. From 1826 to 1843, German amateur astronomer Heinrich Schwabe observed the Sun, discovering that it rotates on its axis once every 27 days. He noticed the Sun goes from quiet periods, where no sunspots can be seen, to the maximum phase where 20 or more groups of sunspots can be seen.
During the solar cycle, storms can reach up to level G5, classified as “extreme”, around four times on average. While G3-strength storms are more common, with around 200 per solar cycle, they can still produce powerful aurora around the equinoxes due to something known as the “Russell-McPherron Effect”
Cameras are everywhere. For over two centuries, these devices have grown increasingly popular and proven to be so useful, they have become an indispensable part of modern life.
Today, they are included in a vast range of applications—everything from smartphones and laptops to security and surveillance systems to cars, aircraft, and satellites imaging Earth from high above. And as an overarching trend toward miniaturizing mechanical, optical, and electronic products continues, scientists and engineers are looking for ways to create smaller, lighter, and more energy-efficient cameras for these technologies.
Ultra-flat optics have been proposed as a solution for this engineering challenge, as they are an alternative to the relatively bulky lenses found in cameras today. Instead of using a curved lens made out of glass or plastic, many ultra-flat optics, such as metalenses, use a thin, flat plane of microscopic nanostructures to manipulate light, which makes them hundreds or even thousands of times smaller and lighter than conventional camera lenses.
An interesting & apposite article on a vital aspect of the Space-Race not normally covered.
Nearly 15,000 satellites in 432 constellations are driving today’s $570 billion dollar space economy. Dr. Namrata Goswami explains recent predictions for over 60,000 satellites and $2 trillion in space by 2040.
Dr. Namrata Goswami is a Professor of Space Security at Johns Hopkins University and co-author of the book “Scramble for the Skies”. She joins us today to discuss the current state of the emerging space economy and the Great Powers Competition for control of Earth orbit and beyond.
Dr. Namrata Goswami, Professor of Space Security at Johns Hopkins University and co-author of the book “Scramble for the Skies”. She joins us today to discuss the current state of the emerging space economy and the Great Powers Competition for control of Earth orbit and beyond.
Disclaimer: “The views expressed are those of the author and do not reflect the official guidance or position of the United States Government, the Department of Defense, the United States Air Force, or the United States Space Force.”
Questions to inspire discussion.
🧠 Q: What improvements does Tesla’s AI5 chip offer over AI4? A: AI5 provides a 40x improvement in silicon, addressing core limitations of AI4, with 8x more compute, 9x more memory, 5x more memory bandwidth, and the ability to easily handle mixed precision models.
📱 Q: How will Starlink-enabled smartphones revolutionize connectivity? A: Starlink-enabled smartphones will allow direct high bandwidth connectivity from satellites to phones, requiring hardware changes in phones and collaboration between satellite providers and handset makers.
🌐 Q: What is Elon Musk’s vision for Starlink as a global carrier? A: Musk envisions Starlink as a global carrier working worldwide, offering users a comprehensive solution for high bandwidth at home and direct to cell through one direct deal.
🚀 Q: What are the expected capabilities of SpaceX’s Starship? A: Starship is projected to demonstrate full reusability next year, carrying over 100 tons to orbit, being five times bigger than Falcon Heavy, and capable of catching both the booster and ship.
AI and Compute.