Toggle light / dark theme

More eyes on the skies can help planes reduce climate-warming contrails

Aviation’s climate impact is partly due to contrails—condensation that a plane streaks across the sky when it flies through icy and humid layers of the atmosphere. Contrails trap heat that radiates from the planet’s surface, and while the magnitude of this impact is uncertain, several studies suggest contrails may be responsible for about half of aviation’s climate impact.

Pilots could conceivably reduce their planes’ climate impact by avoiding contrail-prone regions, similarly to making altitude adjustments to avoid turbulence. But to do so requires knowing where in the sky contrails are likely to form.

To make these predictions, scientists are studying images of contrails that have formed in the past. Images taken by geostationary satellites are one of the main tools scientists use to develop contrail identification and avoidance systems.

The Governance Case for Tesla Taking a Pre-IPO Stake in SpaceX

Elon Musk is considering Tesla taking a pre-IPO stake in SpaceX to integrate their businesses, accelerate ambitious projects, and increase the value of both companies ## ## Questions to inspire discussion.

Strategic Governance Alignment.

🔄 Q: Why should Tesla acquire a pre-IPO stake in SpaceX rather than waiting until after the IPO? A: A pre-IPO stake resolves governance and conflict risks before SpaceX’s planned $30B IPO in mid-2026, ensuring all transactions are recorded as part of the IPO and avoiding complications that could impact IPO pricing or create persistent post-IPO conflicts between the two companies.

🎯 Q: What is the core governance problem Tesla shareholders currently face with SpaceX? A: Tesla shareholders are exposed to SpaceX outcomes through dependencies on Starlink connectivity, orbital compute, and launch cadence without any ownership rights, governance rights, or downside protection as the companies converge operationally but not financially.

⚖️ Q: How would a pre-IPO stake transaction affect Tesla’s ownership structure and Musk’s control? A: The transaction would dilute Tesla by 20% but could raise market cap to $1.62-2T, increasing Musk’s stake to 22.1–24% and his net worth approaching $1T, enabling him to achieve 25% control significantly earlier than under the compensation plan.

Capital Requirements and Infrastructure.

Highly insulating polymer film that shields satellites to boost flexible electronics’ performance

Researchers have found that they could use highly insulating aluminum-coated polymer film to improve the performance of flexible electronics and medical sensors.

Currently, the aluminum-coated polymer film is used to shield satellites from temperature extremes.

Researchers at Empa have succeeded in making the material even more resistant by implementing an ultra-thin intermediate layer.

SpaceX sets plans for massive $20M H-E-B sized Texas project

So, essentially SpaceX’s new parking garage will be bigger than your local H-E-B (excluding the largest H-E-B in San Antonio of course). Construction on the garage began earlier this year in February, but it’s expected to be completed by January 7, 2027, according to the TDLR.

SpaceX’s Bastrop facility is a major manufacturing hub for its Starlink satellite internet service, producing terminals and components. It’s located across the street from Hyperloop Plaza, a Musk-owned shopping center which houses The Boring Company, and the new X (formerly Twitter) headquarters.

2.8 days to disaster: Why we are running out of time in low earth orbit

A “House of Cards” is a wonderful English phrase that it seems is now primarily associated with a Netflix political drama. However, its original meaning is of a system that is fundamentally unstable. It’s also the term Sarah Thiele, originally a Ph.D. student at the University of British Columbia, and now at Princeton, and her co-authors used to describe our current satellite mega-constellation system in a new paper available in pre-print on arXiv.

They have plenty of justification for using that term. Calculations show that, across all low-Earth orbit mega-constellations, a “close approach,” defined as two satellites passing by each at less than 1km separation, occurs every 22 seconds. For Starlink alone, that number is once every 11 minutes. Another known metric of Starlink is that, on average, each of the thousands of satellites have to perform 41 maneuvers per year to avoid running into other objects in their orbit.

That might sound like an efficiently engineered system operating the way it should, but as any engineer will tell you, “edge cases”—the things that don’t happen in a typical environment, are the cause of most system failures. According to the paper, solar storms are one potential edge case for satellite mega-constellations. Typically, solar storms affect satellite operation in two ways.

A new five-year survey of the Magellanic Clouds will answer some questions about our neighbors

The Large and Small Magellanic Clouds are irregular dwarf galaxies and satellites of the Milky Way. The LMC is about 163,000 light-years away and the SMC is about 206,000 light-years away, and their close proximity makes them excellent laboratories for the study of galaxies in general. The Clouds are the focus of a new research group being formed at the Leibniz Institute for Astrophysics Potsdam (AIP).

Both clouds are home to numerous objects and regions that capture astronomers’ attention. The LMC hosts the Tarantula Nebula, an extremely active star-forming region that contains some of the largest stars known. The SMC hosts NGC 346, an open star cluster that contains numerous massive stars and is still forming many high-mass stars. The Clouds also contain variable stars that act as standard candles in the cosmic distance ladder. That’s just a sample from a long list of the clouds’ interesting features.

It can be easier to study things like star formation in galaxies other than the Milky Way, because we’re inside the Milky Way and can’t see all of it. The Large and Small Magellanic Clouds are excellent natural laboratories to study how galaxies evolve because astronomers can see them from a good vantage point.

An Old Jeweler’s Trick Could Unlock the Next Generation of Nuclear Clocks

Last year, a research team led by UCLA achieved a milestone scientists had pursued for half a century. They succeeded in making radioactive thorium nuclei interact with light by absorbing and emitting photons, similar to how electrons behave inside atoms. First envisioned by the group in 2008, the breakthrough is expected to transform precision timekeeping and could significantly improve navigation systems, while also opening the door to discoveries that challenge some of the most basic constants in physics.

The advance comes with a major limitation. The required isotope, thorium-229, exists only as a byproduct of weapons-grade uranium, making it extremely rare. Researchers estimate that just 40 grams of this material are currently available worldwide for use in nuclear clock research.

A new study now shows a way around this obstacle. An international collaboration led by UCLA physicist Eric Hudson has developed an approach that uses only a small fraction of the thorium needed in earlier experiments, while delivering the same results previously achieved with specialized crystals. Described in Nature, the technique is both straightforward and low cost, raising the possibility that nuclear clocks could one day be small and affordable enough to fit into everyday devices like phones or wristwatches. Beyond consumer electronics, the clocks could replace existing systems used in power grids, cell phone towers, and GPS satellites, and may even support navigation where GPS is unavailable, such as in deep space or underwater.

Chip-scale magnetometer uses light for high-precision magnetic sensing

Researchers have developed a precision magnetometer based on a special material that changes optical properties in response to a magnetic field. The device, which is integrated onto a chip, could benefit space missions, navigation and biomedical applications.

High-precision magnetometers are used to measure the strength and direction of magnetic fields for various applications. However, many of today’s magnetometers must operate at extremely low temperatures—close to 0 kelvin—or require relatively large and heavy apparatus, which significantly restricts their practicality.

“Our device operates at room temperature and can be fully integrated onto a chip,” said Paolo Pintus from the University of California, Santa Barbara (UCSB) and the University of Cagliari, Italy, co-principal investigator for the study. “The light weight and low power consumption of this magnetometer make it ideal for use on small satellites, where it could enable studies of the magnetic areas around planets or aid in characterizing foreign metallic objects in space.”

What Time Is It on Mars? Physicists Finally Have an Exact Answer

Summary: Time doesn’t flow uniformly across the solar system, and new research reveals just how differently it unfolds on Mars compared with Earth. By tracing subtle gravitational and orbital influences, scientists have uncovered variations in the pace of Martian time that could become crucial for future navigation and communication far from home.

NIST physicists have precisely calculated how Martian time subtly speeds up and slows down, revealing a daily drift that changes with the planet’s shifting orbit.

Ask someone on Earth for the time and you will get an exact answer, largely because our planet relies on a sophisticated network of atomic clocks, GPS satellites, and rapid communication systems.

Boiling oceans may lurk beneath the ice of solar system’s smallest moons

The outer planets of the solar system are swarmed by ice-wrapped moons. Some of these, such as Saturn’s moon Enceladus, are known to have oceans of liquid water between the ice shell and the rocky core and could be the best places in our solar system to look for extraterrestrial life. A new study published Nov. 24 in Nature Astronomy sheds light on what could be going on beneath the surface of these worlds and provides insights into how their diverse geologic features may have formed.

“Not all of these satellites are known to have oceans, but we know that some do,” said Max Rudolph, associate professor of earth and planetary sciences at the University of California, Davis and lead author on the paper. “We’re interested in the processes that shape their evolution over millions of years and this allows us to think about what the surface expression of an ocean world would be.”

How geology works on icy moons From mountains to earthquakes, Earth’s surface geology is powered by the movement and melting of rock deep inside the planet. On icy moons, geology is driven by the action of water and ice.

/* */