Toggle light / dark theme

In the domain of artificial intelligence, human ingenuity has birthed entities capable of feats once relegated to science fiction. Yet within this triumph of creation resides a profound paradox: we have designed systems whose inner workings often elude our understanding. Like medieval alchemists who could transform substances without grasping the underlying chemistry, we stand before our algorithmic progeny with a similar mixture of wonder and bewilderment. This is the essence of the “black box” problem in AI — a philosophical and technical conundrum that cuts to the heart of our relationship with the machines we’ve created.

The term “black box” originates from systems theory, where it describes a device or system analyzed solely in terms of its inputs and outputs, with no knowledge of its internal workings. When applied to artificial intelligence, particularly to modern deep learning systems, the metaphor becomes startlingly apt. We feed these systems data, they produce results, but the transformative processes occurring between remain largely opaque. As Pedro Domingos (2015) eloquently states in his seminal work The Master Algorithm: “Machine learning is like farming. The machine learning expert is like a farmer who plants the seeds (the algorithm and the data), harvests the crop (the classifier), and sells it to consumers, without necessarily understanding the biological mechanisms of growth” (p. 78).

This agricultural metaphor points to a radical reconceptualization in how we create computational systems. Traditionally, software engineering has followed a constructivist approach — architects design systems by explicitly coding rules and behaviors. Yet modern AI systems, particularly neural networks, operate differently. Rather than being built piece by piece with predetermined functions, they develop their capabilities through exposure to data and feedback mechanisms. This observation led AI researcher Andrej Karpathy (2017) to assert that “neural networks are not ‘programmed’ in the traditional sense, but grown, trained, and evolved.”

A recent study conducted in southern Italy presented some surprising findings that linked the regular consumption of poultry to potential increases in gastrointestinal cancers and all-cause mortality. This has caused one question to arise — is eating chicken really as healthy as we think it is?

The study’s findings indicated that exceeding the weekly recommended amounts — that is, eating more than 300 grams (g) of poultry, such as chicken and turkey, per week — resulted in a 27% higher risk of all-cause mortality compared to eating moderate amounts.

Moreover, the research suggested that higher poultry intake was linked to a 2.3% increase in the risk of gastrointestinal cancers, with a higher observed risk among men at 2.6%. The findings were published in the journal Nutrients.

Lately, there have been many headlines about scientific fraud and journal article retractions. If this trend continues, it represents a serious threat to public trust in science.

One way to tackle this problem—and ensure public trust in science remains high—may be to slow it down. We sometimes refer to this philosophy as “slow science.” Akin to the slow food movement, slow science prioritizes quality over speed and seeks to buck incentive structures that promote mass production.

Slow science may not represent an obvious way to improve science because we often equate science with progress, and slowing down progress does not sound very appealing. However, progress is not just about speed, but about basing important societal decisions on strong scientific foundations. And this takes time.

Some 460 million metric tons of plastic are produced globally each year, out of which a staggering 91% of plastic waste is never recycled—with 12% incinerated and 79% left to end up in landfills and oceans and linger in our environment.

Exposure to various elements causes the plastics to break down into microplastics (5 mm) and nanoplastics (1,000 nm). There is a growing public health concern as these nanoplastics (NPs) make their way into the human body through air, water, food and contact with skin.

A recent study published in ACS ES&T Water has revealed that the already detrimental effects of NPs are further amplified by their ability to interact with various toxic environmental contaminants, such as heavy metal ions.

Humans are the only species on Earth known to use language. They do this by combining sounds into words and words into sentences, creating infinite meanings.

This process is based on linguistic rules that define how the meaning of calls is understood in different sentence structures. For example, the word “ape” can be combined with other words to form compositional sentences that add meaning: “the ape eats” or append meaning: “big ape,” and non-compositional idiomatic sentences that create a completely new meaning: “go ape.”

A key component of language is syntax, which determines how the order of words affects meaning. For instance, how “go ape” and “ape goes” convey different meanings.

Digger wasps make a short burrow for each egg, stocking it with food and returning a few days later to provide more. A new study reveals that mother wasps can remember the locations of up to nine separate nests at once, rarely making mistakes, despite the fact nests are dug in bare sand containing hundreds belonging to other females.

The paper is published in the journal Current Biology and is titled “Memory and the scheduling of parental care in an in the wild.”

Mothers feed their young in age order, adjusting the order if one dies, and they can even delay feeding offspring that had more food at the first visit. Their intricate scheduling reduces the chance that offspring starve.

Microplastic pollution is a severe ecological and environmental issue and is also one of the important risk factors affecting human health. Polylactic acid (PLA), a medical biodegradable material approved by the FDA, is an important material to replace petroleum-based plastics.

Although PLA has achieved large-scale application in , its brittle characteristics make it more likely to generate microplastic particles. These particles can efficiently invade the gut through the food chain and trigger unknown biotransformation processes at the microbiota–host interface. Therefore, elucidating precisely the transformation map of PLA microplastics within the living body is crucial for assessing their safety.

In a study published in the Proceedings of the National Academy of Sciences, a research team led by Prof. Chen Chunying from the National Center for Nanoscience and Technology (NCNST) of the Chinese Academy of Sciences has revealed the complete biological fate of PLA microplastics (PLA-MPs) in the gut of mice, particularly focusing on their microbial fermentation into endogenous metabolites and their involvement in the .

Free-range atoms, roaming around without restrictions, have been captured on camera for the first time – enabling physicists to take a closer look at long predicted quantum phenomena.

It’s a bit like snapping a shot of a rare bird in your back garden, after a long time of only ever hearing reports of them in the area, and seeing the food in your bird feeder diminish each day. Instead of birdwatching, though, we’re talking about quantum physics.

The US researchers behind the breakthrough carefully constructed an “atom-resolved microscopy” camera system that first puts atoms in a contained cloud, where they roam freely. Then, laser light freezes the atoms in position to record them.

By Chuck Brooks.

Source: Forbes


Robotics is now revolutionizing numerous industry sectors through the integration of artificial intelligence, machine learning, and reinforcement learning, as well as advances in computer vision that empower robots to make complicated judgments.

Industrial automation in factories and warehouses has been the main emphasis of robotics for many years because of its efficiency and affordability. These settings are usually regulated, organized, and predictable. Consequently, industries like manufacturing, agriculture, warehouse operations, healthcare, and security have utilized robotics to automate mundane programmable tasks.

Robotics in those and many other industries are becoming more refined and capable with the contributions of new material sciences, and artificial intelligence tools. It now appears that with those advances, we are at the precipice of building functional, dexterous, and autonomous humanoid robots that were once the topic of futurist writing.

A new study suggests that, in the case of global catastrophe, urban agriculture alone could sustain only about one fifth of the population of a temperate, median-sized city, but the whole city could be fed by also farming land within a short distance of the urban area.

Matt Boyd of Adapt Research Ltd, New Zealand, and Nick Wilson of the University of Otago, New Zealand, present these findings in PLOS One.

Abrupt global catastrophes—such as nuclear wars, extreme pandemics, or solar storms—could severely hamper . Shortages of resources like could disrupt food production and transport, possibly leading to famine. Prior research has suggested that this impact could be mitigated by , which includes such approaches as home, community, and rooftop gardens.