Toggle light / dark theme

Engineers turn toxic ancient tomb fungus into anti-cancer drug

Penn-led researchers have turned a deadly fungus into a potent cancer-fighting compound. After isolating a new class of molecules from Aspergillus flavus, a toxic crop fungus linked to deaths in the excavations of ancient tombs, the researchers modified the chemicals and tested them against leukemia cells. The result? A promising cancer-killing compound that rivals FDA-approved drugs and opens up new frontiers in the discovery of more fungal medicines.

“Fungi gave us penicillin,” says Sherry Gao, Presidential Penn Compact Associate Professor in Chemical and Biomolecular Engineering (CBE) and in Bioengineering (BE) and senior author of a new paper in Nature Chemical Biology on the findings. “These results show that many more medicines derived from natural products remain to be found.”

Latest Trends in Artificial Intelligence in Biotechnology & Biology

🔥 Witness the AI Revolution in Biotechnology & Biology!
In this video, know how Artificial Intelligence is transforming the world of biotech — from AI-powered drug discovery and CRISPR gene editing to precision medicine and bioinformatics!

💡 Get a glimpse of future labs, real-world breakthroughs, and career trends that are reshaping life sciences as we know it.

🚀 Whether you’re a student, researcher, or biotech enthusiast — this is your gateway to the future!

👉 Subscribe to Biotecnika for powerful insights, expert guidance, and the latest in biotech innovation:

Stay updated with the latest in AI, Biotechnology, and Career Insights – Subscribe to Biotecnika now!” Subscribe to Biotecnika for more biotech breakthroughs!“
“Don’t miss out – Hit subscribe for biotech + AI updates!”

AI ML in Biology, Bioinformatics & Computational Biology Summer Training Program With Project Work + Paper Publication Assistance.

Creating the World’s First CRISPR Medicine, for Sickle Cell Disease

When Vijay Sankaran was an MD-PhD student at Harvard Medical School in the mid-2000s, one of his first clinical encounters was with a 24-year-old patient whose sickle cell disease left them with almost weekly pain episodes.

“The encounter made me wonder, couldn’t we do more for these patients?” said Sankaran, who is now the HMS Jan Ellen Paradise, MD Professor of Pediatrics at Boston Children’s Hospital.

In 2008, Orkin, Sankaran, and colleagues achieved their vision by identifying a new therapeutic target for sickle cell disease.

In December 2023, through the development efforts of CRISPR Therapeutics and Vertex Pharmaceuticals, their decades-long endeavor reached fruition in the form of a new treatment, CASGEVY, approved by the U.S. Food and Drug Administration.

The decision has ushered in a new era for sickle cell disease treatment — and marked the world’s first approval of a medicine based on CRISPR/Cas9 gene-editing technology.


How a genetic insight paired with gene editing technology led to a life-changing new therapy.

Gene-editing nanoparticle system targets multiple organs simultaneously

A gene-editing delivery system developed by UT Southwestern Medical Center researchers simultaneously targeted the liver and lungs of a preclinical model of a rare genetic disease known as alpha-1 antitrypsin deficiency (AATD), significantly improving symptoms for months after a single treatment, a new study shows. The findings, published in Nature Biotechnology, could lead to new therapies for a variety of genetic diseases that affect multiple organs.

“Multi-organ diseases may need to be treated in more than one place. The development of multi-organ-targeted therapeutics opens the door to realizing those opportunities for this and other diseases,” said study leader Daniel Siegwart, Ph.D., Professor of Biomedical Engineering, Biochemistry, and in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

Gene editing—a group of technologies designed to correct disease-causing mutations in the genome—has the potential to revolutionize medicine, Dr. Siegwart explained. Targeting these technologies to specific organs, tissues, or will be necessary to effectively and safely treat patients.

Years of painting restoration work done in just hours by new technique

Although AI-based restoration methods can indeed bring new life to damaged paintings, the end result is typically a digital copy of the original painting. By contrast, a new MIT technique applies reversible repairs to the physical painting itself, in the form of a removable mask.

The process was developed by mechanical engineering graduate student Alex Kachkine, who restores paintings via traditional hand-painting techniques as a hobby.

He realized that many galleries have a number of paintings which never get displayed, because they require restoration that would take too long – and thus be too expensive – to perform by hand. Utilizing his method, however, restoration times could be reduced from years, months or weeks down to a matter of hours.

Quantum computing tackles classical fluid dynamics challenges

Researchers at the Department of Energy’s Oak Ridge National Laboratory have tested a quantum computing approach to an old challenge: solving classical fluid dynamics problems.

The work is published in the journal Physics of Fluids. The results highlight avenues for further study of ’s potential to aid scientific discovery.

For the test problem, the research team used the Hele-Shaw flow problem—a scenario of two flat, parallel plates extremely close to each other and the flow of liquids and gases between them. The problem, although idealized, offers important applications in real-world problems such as microfluidics, groundwater flow, porous media flow, oil recovery and bioengineering.

Algorithm streamlines vascular system design for 3D printed hearts

There are more than 100,000 people on organ transplant lists in the U.S., some of whom will wait years to receive one—and some may not survive the wait. Even with a good match, there is a chance that a person’s body will reject the organ. To shorten waiting periods and reduce the possibility of rejection, researchers in regenerative medicine are developing methods to use a patient’s own cells to fabricate personalized hearts, kidneys, livers, and other organs on demand.

Ensuring that oxygen and nutrients can reach every part of a newly grown organ is an ongoing challenge. Researchers at Stanford have created new tools to design and 3D print the incredibly complex vascular trees needed to carry blood throughout an organ. Their platform, published June 12 in Science, generates designs that resemble what we actually see in the human body significantly faster than previous attempts and is able to translate those designs into instructions for a 3D printer.

“The ability to scale up bioprinted tissues is currently limited by the ability to generate vasculature for them—you can’t scale up these tissues without providing a ,” said Alison Marsden, the Douglas M. and Nola Leishman Professor of Cardiovascular Diseases, professor of pediatrics and of bioengineering at Stanford in the Schools of Engineering and Medicine and co-senior author on the paper. “We were able to make the algorithm for generating the vasculature run about 200 times faster than prior methods, and we can generate it for complex shapes, like organs.”

Cellular coordinate system reveals secrets of active matter

All humans who have ever lived were once each an individual cell, which then divided countless times to produce a body made up of about 10 trillion cells. These cells have busy lives, executing all kinds of dynamic movement: contracting every time we flex a muscle, migrating toward the site of an injury, and rhythmically beating for decades on end.

Cells are an example of active matter. As inanimate matter must burn fuel to move, like airplanes and cars, active matter is similarly animated by its consumption of energy. The basic molecule of cellular energy is (ATP), which catalyzes that enable cellular machinery to work.

Caltech researchers have now developed a bioengineered coordinate system to observe the movement of cellular machinery. The research enables a better understanding of how cells create order out of chaos, such as during or in the organized movements of chromosomes that are a prerequisite to faithful cell division.

Antibody-drug conjugates as game changers in bladder cancer: current progress and future directions

In recent years, ADCs have emerged as a transformative therapeutic modality in oncology, offering a promising avenue for the treatment of bladder cancer. ADCs combine the specificity of monoclonal antibodies with the potent cytotoxicity of chemotherapeutic agents, enabling targeted delivery of payloads to tumor cells while sparing healthy tissues. This unique mechanism of action has led to significant advancements in the treatment landscape, particularly for cancers that are resistant to conventional therapies (5). In bladder cancer, ADCs have demonstrated remarkable efficacy by targeting specific tumor-associated antigens, such as nectin-4 and HER2, thereby inducing tumor cell apoptosis and inhibiting metastasis. For example, Enfortumab vedotin (targeting NECTIN-4) achieved a median overall survival of 12.9 months in the EV-301 trial (vs. 9.0 months with chemotherapy) (6). Similarly, trastuzumab deruxtecan, a HER2-directed ADC, has demonstrated promising antitumor activity in HER2-expressing bladder cancer (7), offering a potential therapeutic option for this subset of patients.

Despite these promising developments, several challenges persist in the clinical application of ADCs for bladder cancer. Key issues include the durability of therapeutic responses, the management of off-target toxicities, and the heterogeneity of antigen expression across different patient subtypes (8). Moreover, the optimal integration of ADCs with existing treatment paradigms, such as immune checkpoint inhibitors and chemotherapy, remains an area of active investigation (9). Addressing these challenges is crucial for maximizing the therapeutic potential of ADCs and improving patient outcomes.

This study provides a comprehensive evaluation of the current landscape of ADC-based therapies for bladder cancer, with a focus on their mechanisms of action, clinical efficacy, and safety profiles. We systematically review ongoing clinical trials, highlighting the most promising ADC candidates and their respective targets. Furthermore, we explore emerging strategies to enhance the precision and durability of ADC therapies, including the development of novel linkers, payloads, and antibody engineering techniques. By synthesizing the latest clinical data, this review aims to offer valuable insights into the future directions of ADC research and their potential to revolutionize bladder cancer treatment. Our findings underscore the importance of continued innovation in ADC technology and the need for personalized approaches to overcome the limitations of current therapies, ultimately paving the way for more effective and safer treatment options for patients with bladder cancer.