Blog

Archive for the ‘bioengineering’ category: Page 118

Feb 27, 2020

Hacking DNA: The Story of CRISPR, Ken Thompson, and the Gene Drive

Posted by in categories: bioengineering, biotech/medical, genetics

The very nature of the human race is about to change. This change will be radical and rapid beyond anything in our species’ history. A chapter of our story just ended and the next chapter has begun.

This revolution in what it means to be human will be enabled by a new genetic technology that goes by the innocuous sounding name CRISPR, pronounced “crisper”. Many readers will already have seen this term in the news, and can expect much more of it in the mainstream media soon. CRISPR is an acronym for Clustered Regularly Interspaced Short Palindromic Repeats and is to genomics what vi (Unix’s visual text editor) is to software. It is an editing technology which gives unprecedented power to genetic engineers: it turns them into genetic hackers. Before CRISPR, genetic engineering was slow, expensive, and inaccurate. With CRISPR, genome editing is cheap, accurate, and repeatable.

Continue reading “Hacking DNA: The Story of CRISPR, Ken Thompson, and the Gene Drive” »

Feb 26, 2020

How to Battle an Epidemic? Digitize Its DNA and Share It With the World

Posted by in categories: bioengineering, biotech/medical, education, genetics

Ogba Educational Clinic


A nightmarish scene was burnt into my memory nearly two decades ago: Changainjie, Beijing’s normally chaotic “fifth avenue,” desolate without a sign of life. Schools shut, subways empty, people terrified to leave their homes. Every night the state TV channels reported new cases and new deaths. All the while, we had to face a chilling truth: the coronavirus, SARS, was so novel that no one understood how it spread or how to effectively treat it. No vaccines were in sight. In the end, it killed nearly 1,000 people.

It’s impossible not to draw parallels between SARS and the new coronavirus outbreak, COVID-19, that’s been ravaging China and spreading globally. Yet the response to the two epidemics also starkly highlights how far biotech and global collaborations have evolved in the past two decades. Advances in genetic sequencing technologies, synthetic biology, and open science are reshaping how we deal with potential global pandemics. In a way, the two epidemics hold up a mirror to science itself, reflecting both technological progress and a shift in ethos towards collaboration.

Continue reading “How to Battle an Epidemic? Digitize Its DNA and Share It With the World” »

Feb 26, 2020

Gene-editing is more error-prone than thought, new findings suggest

Posted by in categories: bioengineering, biotech/medical, genetics

The standard gene-editing tool, CRISPR-Cas9, frequently produces a type of DNA mutation that ordinary genetic analysis misses, claims new research published in the journal Proceedings of the National Academy of Sciences (PNAS). In describing these findings the researchers called such oversights “serious pitfalls” of gene editing (Skryabin et al., 2020). In all, the new results suggest that gene-editing is more error-prone than thought and, further, that identifying and discarding defective and unwanted outcomes is not as easy as generally supposed.

Gene-editing is more error-prone than thought, new findings suggest

CRISPR Enzyme on DNA (Photo: MIT News)

Feb 25, 2020

How Bionic Limbs Are Changing Lives | VICE on HBO

Posted by in categories: bioengineering, computing, cyborgs, neuroscience, transhumanism

A bionic revolution is brewing, as recent advancements in bioengineering have brought about scientific breakthroughs in rehabilitation for people with disabilities. The most cutting edge research is happening inside the human brain, where implanted technology allows people to communicate directly with computers, using their thoughts.

VICE’s Wilbert L. Cooper travels to Zurich to see the first-ever bionic Olympics and discovers a host of technologies that are expanding what it means to be human.

Continue reading “How Bionic Limbs Are Changing Lives | VICE on HBO” »

Feb 24, 2020

This man’s potentially huge medical breakthrough can’t get funding, so he’s trying something desperate

Posted by in categories: bioengineering, biotech/medical, business, existential risks

https://youtube.com/watch?v=oJcX8ch_mLg

Four years ago, Todd Rider was on top of the world. The MIT-trained bioengineer had developed a radical idea for killing viruses. Initial test results showed that his therapy, called DRACO, could kill every virus he threw it at: 15 viruses were killed in human cells, and two in mice.

It seemed like there was a chance it could be the biggest discovery in medicine since the invention of antibiotics. Enthusiastic headlines praised the potentially world-changing panacea. “Todd Rider Has a Kill Switch for Viruses,” wrote Bloomberg Businessweek. The Verge: “Killing sickness: is DRACO a doomsday device for viruses?” Time magazine declared it one of the top 50 inventions of the year.

Continue reading “This man’s potentially huge medical breakthrough can’t get funding, so he’s trying something desperate” »

Feb 22, 2020

Optimising gene editing for cancer therapy

Posted by in categories: bioengineering, biotech/medical, genetics

Gene editing holds promise for the treatment of cancers that are driven by well-characterised molecular alterations. A study now provides a proof of concept for the feasibility of in vivo gene editing to correct TERT mutations in glioblastoma, providing a platform for the direct manipulation of genetic alterations to reduce tumour growth.

Feb 21, 2020

The Techno-Human Shell – A Jump in the Evolutionary Gap

Posted by in categories: bioengineering, biotech/medical, computing, cyborgs, nanotechnology

It is in this second phase when Darwinian evolutionary rivers will merge with the rivers of intelligent designers, represented by scientists, programmers and engineers, who will fuse organic natural biology, synthetic biology, and digital technology into a unified whole that future generations will deem their anatomy. The merger will serve to afford greater intelligence and, longer, healthier lives. In exchange, we will relinquish actual autonomy for apparent autonomy, where what was once considered “free will” will be supplanted by the deterministic logic of machinery somewhere in the mainstream of our unconscious.

Although in-the-body technology will have an explosive effect on commerce, entertainment, and employment, in the near term the concentration will be on medical devices, such as the innocuous pacemaker (essentially a working silicon-based computer, with sensors, memories, and a stimulation device with telecommunications to the outer world). In a second epoch, these devices will be gradually down-sized by advances in synthetic DNA, molecular- and nano-sized processors, each deployed alongside and within cells and organs as permanent non-organic, internal adjuncts to our anatomy for use as: nano-prosthetics, nano-stimulators/suppressors, artificial organ processors, metabolic and cognitive enhancers, and permanent diagnostic tools to ensure our physical and psychological well-being as we head toward a practically interminable lifetime.[6]

Continue reading “The Techno-Human Shell – A Jump in the Evolutionary Gap” »

Feb 18, 2020

How Gene Editing Is Changing the World

Posted by in categories: bioengineering, biotech/medical

The applications are almost endless.


In “Hacking the Code of Life”, Nessa Carey explores advances that are giving us new powers to alter the genome.

Feb 18, 2020

Why human gene editing must not be stopped

Posted by in categories: bioengineering, biotech/medical, ethics

Gene editing of human embryos — yes or not?


If there is a discernible duty here it is surely to create the best possible child. That is what it is to act for the best, all things considered. This we have moral reasons to do; but they are not necessarily overriding reasons.

Continue reading “Why human gene editing must not be stopped” »

Feb 18, 2020

Gene Editing is Advancing at Breakneck Speed

Posted by in categories: bioengineering, biotech/medical, genetics

In October 2019, Liu and his colleagues published a paper in Nature, describing an even newer technology, called prime editing. Prime editing can not only make all twelve of the possible base substitutions, it can also make multiple-base insertions or deletions, without requiring a double-strand break. It achieves this with a multi-step operation that first cuts one strand, then performs the appropriate substitution, insertion, or deletion, and then nicks the second strand to allow the bases on the second strand to be replaced by bases that complement the ones substituted, inserted into or deleted from the first strand. The result is a modified stretch of DNA that had never been completely separated. This has the effect of massively reducing the number of off-target modifications.

This new prime editing variant of CRISPR technology, can make the same corrections to the defects that cause sickle cell disease and beta-thalassemia that standard CRISPR/Cas9 has now made in human subjects, but with less opportunity for unwanted off-target changes. Furthermore, its possible applicability is much wider. The ClinVar database lists over 75,000 pathogenic mutations in the human genome. Of these, over 89% are potentially correctable by prime editing.

Continue reading “Gene Editing is Advancing at Breakneck Speed” »