Blog

Archive for the ‘bioengineering’ category: Page 117

Mar 6, 2020

Meet the families ‘biohacking’ their bodies to live healthier… and longer

Posted by in categories: bioengineering, food

It’s 5pm in the Farrant household and Jack, six, and Thomas, four, are currently manifesting their desires in the form of Lego. To an outsider this looks like two small children playing with toys, but their mother Catherine proudly points out that Jack has built a yacht – something he is helping his family to acquire via visualisation exercises.

‘Dinner’s ready,’ calls out the nanny. In line with the family’s Paleo diet – of anti-inflammatory, natural foods – they have octopus cooked with lemongrass, and fish-bone broth. ‘Yes, my favourite,’ cries Jack happily, while his mum explains exactly what the broth is: ‘It’s an age-old elixir that’s made from boiling wild bones. It’s very high in iodine, which most of us are deficient in.’

After dinner, the children can continue to express their creativity, or watch some television – though if they’re going to do the latter after 6pm they need to put on their ‘blue-light blockers’, glasses with amber lenses to block the blue light of technology from affecting their sleep. ‘We also do red-light therapy,’ explains Catherine, pointing to a red dinosaur lamp in the boys’ bedroom. ‘It’s to help the body’s natural rhythms of sunset with exposure to red colours at night, and blue and white light in the morning.’

Mar 6, 2020

Human gene editing is too transformative to be guided by the few

Posted by in categories: bioengineering, biotech/medical, genetics, health

My editorial from today’s (3/18/19) Financial Times:

Far sooner than most people realise, the genetics revolution will transform the world within and around us. Although we think about genetic technologies primarily in the context of healthcare, these tools are set to change the way we make babies, the nature of the babies we make and, ultimately, our evolutionary trajectory as a species — and we are not remotely ready for what’s coming. Yet we must be, to optimise the benefits and minimise the potential harms of genetic technologies.

Continue reading “Human gene editing is too transformative to be guided by the few” »

Mar 6, 2020

Gene-editing tool CRISPR used inside a human’s body for the first time, scientists say

Posted by in categories: bioengineering, biotech/medical, genetics

Scientists say they have used the gene editing tool CRISPR inside someone’s body for the first time — offering a new frontier for efforts to operate on DNA, the chemical code of life, to treat diseases.

A patient recently had it done at the Casey Eye Institute at Oregon Health & Science University in Portland for an inherited form of blindness, according to the companies that make the treatment. The company would not give details on the patient or when the surgery occurred.

It may take up to a month to see if it worked to restore the patient’s vision. If the first few attempts seem safe, doctors plan to test it on 18 children and adults.

Mar 5, 2020

Doctors use CRISPR gene editing inside a person’s body for first time

Posted by in categories: bioengineering, biotech/medical

Scientists say they have used the gene editing tool CRISPR inside someone’s body for the first time, a new frontier for efforts to operate on DNA, the chemical code of life, to treat diseases.

A patient recently had it done at the Casey Eye Institute at Oregon Health & Science University in Portland for an inherited form of blindness, the companies that make the treatment announced Wednesday. They would not give details on the patient or when the surgery occurred.

It may take up to a month to see if it worked to restore vision. If the first few attempts seem safe, doctors plan to test it on 18 children and adults.

Mar 5, 2020

Our Genetic Future Is Coming… Faster Than We Think

Posted by in categories: bioengineering, biotech/medical, evolution, food, genetics

If there was a public vote about human gene enhancement, would you vote YES or NO?


Our species is on the cusp of a revolution that will change every aspect of our lives but we’re hardly talking about it.

Continue reading “Our Genetic Future Is Coming… Faster Than We Think” »

Mar 5, 2020

First Patient Receives In Vivo CRISPR Editing

Posted by in categories: bioengineering, biotech/medical

Doctors in Oregon delivered the gene editing machinery behind the retina in hopes of treating an inherited form of blindness, according to the companies that developed the therapy.

Mar 3, 2020

Could Gene Editing Turn You Into Captain America?

Posted by in categories: bioengineering, biotech/medical, cybercrime/malcode

DNA hacking could save humanity—or destroy it. Author Jamie Metzl joins Inside the Hive to discuss the future of designer babies.

Mar 3, 2020

Is Sex for Reproduction About to Become Extinct?

Posted by in categories: bioengineering, biotech/medical, genetics, sex

As the coming genetic revolution plays out, we’ll still have sex for most of the same reasons we do today. But we’ll increasingly not do it to procreate.


Another rocket booster will be the application of gene editing technologies like CRISPR to edit the genomes of pre-implanted embryos or of the sperm and eggs used to create them. Just this week, Chinese researchers announced they had used CRISPR to edit the CCR5 gene in the pre-implanted embryos of a pair of Chinese twins to make them immune to HIV, the first ever case of gene editing humans and a harbinger of our genetically engineered future. The astounding complexity of the human genome will put limits on our ability to safely make too many simultaneous genetic changes to human embryos, but our ability and willingness to make these types of alterations to our future children will grow over time along with our knowledge and technological ability.

Continue reading “Is Sex for Reproduction About to Become Extinct?” »

Mar 1, 2020

New platform for engineering ribosomes to ‘cook new cuisines’

Posted by in categories: bioengineering, biotech/medical

Synthetic biology researchers at Northwestern University have developed a system that can rapidly create cell-free ribosomes in a test tube, then select the ribosome that can perform a certain function.

The system, called synthesis and evolution (RISE), is an important step toward using ribosomes beyond their natural capabilities. The key feature of RISE is the ability to evolve ribosomes without cell viability constraints. The result could be new ways to synthesize materials, like nylon, or therapies, like that could address rising antibiotic resistance.

“Ribosomes have an extraordinary capability as the protein synthesis machinery of the cell,” said Michael Jewett, Walter P. Murphy Professor of Chemical and Biological Engineering and director of the Center for Synthetic Biology at Northwestern’s McCormick School of Engineering, who led the research. “But to synthesize proteins beyond those found in nature, we have to design and modify the ribosome to work with non-natural substrates. Developing ribosomes in vitro is an important part of that system, and we are very excited to have this new capability.”

Mar 1, 2020

Meet Xenobot, an Eerie New Kind of Programmable Organism

Posted by in categories: bioengineering, information science

Under the watchful eye of a microscope, busy little blobs scoot around in a field of liquid—moving forward, turning around, sometimes spinning in circles. Drop cellular debris onto the plain and the blobs will herd them into piles. Flick any blob onto its back and it’ll lie there like a flipped-over turtle.

Their behavior is reminiscent of a microscopic flatworm in pursuit of its prey, or even a tiny animal called a water bear—a creature complex enough in its bodily makeup to manage sophisticated behaviors. The resemblance is an illusion: These blobs consist of only two things, skin cells and heart cells from frogs.

Writing today in the Proceedings of the National Academy of Sciences, researchers describe how they’ve engineered so-calleds (from the species of frog, Xenopus laevis, whence their cells came) with the help of evolutionary algorithms. They hope that this new kind of organism—contracting cells and passive cells stuck together—and its eerily advanced behavior can help scientists unlock the mysteries of cellular communication.