Blog

Archive for the ‘materials’ category: Page 139

Feb 7, 2022

Using more recycled materials to build our cities

Posted by in categories: materials, sustainability

University of Melbourne experts have been working with industry to find new uses for large volumes of recycled waste plastics.

When it comes to finding new ways to use old plastics, bigger really is better. After all, the more plastic waste used in a material, the less ends up in landfill.

A promising emerging technology from Mildura-based Integrated Recycling, tested by University of Melbourne experts, could be used to build very large structures like noise barriers, helping to keep hundreds of tonnes of plastics out of the ground.

Feb 4, 2022

MIT Engineers Create the “Impossible” — New Material That Is Stronger Than Steel and As Light as Plastic

Posted by in categories: chemistry, materials

The new substance is the result of a feat thought to be impossible: polymerizing a material in two dimensions.

Using a novel polymerization process, MIT chemical engineers have created a new material that is stronger than steel and as light as plastic, and can be easily manufactured in large quantities.

The new material is a two-dimensional polymer that self-assembles into sheets, unlike all other polymers, which form one-dimensional, spaghetti-like chains. Until now, scientists had believed it was impossible to induce polymers to form 2D sheets.

Feb 4, 2022

CNC-milled porcelain vases fit together like a three-dimensional puzzle

Posted by in categories: materials, space

Ceramic Bodies is a collection of four porcelain vases that fit together like a three-dimensional puzzle.

Designer Jörg Hugo studied architecture before opening his own design studio. Calling it Studio Jörg Hugo, his work largely explores “the relationship between materiality, form, and space,” as he describes on his personal website. Relying on either digital or analog design methods and production techniques, Hugo creates timeless pieces that completely reinterpret how we interact with space and material. One of his most recent projects, Ceramic Bodies, comprises a collection of four porcelain vases that almost appear to melt into each other like a three-dimensional puzzle.

Designer: Jörg Hugo

Feb 3, 2022

The brain’s secret to life-long learning can now come as hardware for artificial intelligence

Posted by in categories: materials, robotics/AI

When the human brain learns something new, it adapts. But when artificial intelligence learns something new, it tends to forget information it already learned.

As companies use more and more data to improve how AI recognizes images, learns languages and carries out other , a paper publishing in Science this week shows a way that could dynamically rewire themselves to take in new data like the brain does, helping AI to keep learning over time.

“The brains of living beings can continuously learn throughout their lifespan. We have now created an artificial platform for machines to learn throughout their lifespan,” said Shriram Ramanathan, a professor in Purdue University’s School of Materials Engineering who specializes in discovering how materials could mimic the brain to improve computing.

Feb 3, 2022

Scientists engineer new material that can absorb and release enormous amounts of energy

Posted by in categories: materials, robotics/AI

A team of researchers from the University of Massachusetts Amherst recently announced in the Proceedings of the National Academy of Sciences that they had engineered a new rubber-like solid substance that has surprising qualities. It can absorb and release very large quantities of energy. And it is programmable. Taken together, this new material holds great promise for a very wide array of applications, from enabling robots to have more power without using additional energy, to new helmets and protective materials that can dissipate energy much more quickly.

“Imagine a rubber band,” says Alfred Crosby, professor of polymer science and engineering at UMass Amherst and the paper’s senior author. “You pull it back, and when you let it go, it flies across the room. Now imagine a super rubber band. When you stretch it past a certain point, you activate extra energy stored in the material. When you let this rubber band go, it flies for a mile.”

This hypothetical is made out of a new metamaterial—a substance engineered to have a property not found in naturally occurring materials—that combines an elastic, rubber-like substance with tiny magnets embedded in it. This new “elasto-magnetic” material takes advantage of a physical property known as a to greatly amplify the amount of energy the material can release or absorb.

Feb 3, 2022

MIT scientists filed two patents on a new, 2D material that’s stronger than steel

Posted by in category: materials

Scientists at MIT have created a new 2D material that’s stronger than metal! And it could enhance the robustness of bridge-building materials.

Feb 1, 2022

Scientists successfully produced particle-antiparticle pairs from a vacuum

Posted by in categories: materials, particle physics

Cosmic physics mimicked on table-top as graphene enables Schwinger effect.

Jan 31, 2022

Carvalho Araújo completes monolithic concrete house in a Portuguese forest

Posted by in categories: habitats, materials

Concrete and glass are used throughout the interior and exterior of this holiday home in northern Portugal, which local studio Carvalho Araújo designed to blend in with its woodland setting.

Located in Vieira do Minho in the district of Braga, Casa na Caniçada is a second home built on a densely wooded 0.75-acre site next to the Caniçada reservoir.

An existing building of poor design and construction quality was removed to make way for the three-storey house designed by local office Carvalho Araújo.

Jan 30, 2022

Revolutionary Carbon-Based Magnetic Material Finally Synthesized After 70 Years

Posted by in categories: chemistry, materials

Researchers from Osaka University and Osaka City University synthesize and crystallize a molecule that is otherwise too unstable to fully study in the laboratory, and is a model of a revolutionary class of magnets.

Since the first reported production in 2004, researchers have been hard at work using graphene and similar carbon-based materials to revolutionize electronics, sports, and many other disciplines. Now, researchers from Japan have made a discovery that will advance the long-elusive field of nanographene magnets.

In a study recently published in Journal of the American Chemical Society, researchers from Osaka University and collaborating partners have synthesized a crystalline nanographene with magnetic properties that have been predicted theoretically since the 1950s, but until now have been unconfirmed experimentally except at extremely low temperatures.

Jan 30, 2022

New research debunks a popular method for interstellar travel

Posted by in categories: materials, physics

In the 1960s, American physicist Robert W. Bussard proposed a radical idea for interstellar travel: a spacecraft that relied on powerful magnetic fields to harvest hydrogen directly from the interstellar medium.


As it’s come to be known, the Bussard Ramjet has since been popularized by hard science fiction writers like Poul Anderson, Larry Niven, Vernor Vinge, and science communicators like Carl Sagan. Unfortunately, a team of physicists recently analyzed the concept in more detail and concluded that Bussard’s idea is not practical. At a time when interstellar travel looks destined to become a real possibility, this analysis might seem like a wet blanket but is more of a reality check.

Continue reading “New research debunks a popular method for interstellar travel” »