Toggle light / dark theme

Intel released nine research papers at IEDM 2022 that lay the groundwork for future chip designs as the company looks to deliver on its promise of developing processors with over a trillion transistors by 2030.

The research includes new 2D materials for transistors, new 3D packaging technology that narrows the performance and power gap between chiplet and single-die processors to a nearly-imperceptible range, transistors that ‘don’t forget’ when power is removed, and embedded memories that can be stacked directly on top of transistors and store more than one bit per cell, among other innovations.

It was a simple idea—maybe even too simple to work.

Research scientist James Ponder and a team of Georgia Tech chemists and engineers thought they could design a transparent polymer film that would conduct electricity as effectively as other commonly used materials, while also being flexible and easy to use at an industrial scale.

They’d do it by simply removing the nonconductive material from their conductive element. Sounds logical, right?

Year 2017 😗


In 2015, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) developed the first on-chip metamaterial with a refractive index of zero, meaning that the phase of light could be stretched infinitely long. The metamaterial represented a new method to manipulate light and was an important step forward for integrated photonic circuits, which use light rather than electrons to perform a wide variety of functions.

Now, SEAS researchers have pushed that technology further — developing a zero-index waveguide compatible with current silicon photonic technologies. In doing so, the team observed a physical phenomenon that is usually unobservable—a of light.

The research is published in ACS Photonics. The Harvard Office of Technology Development has filed a patent application and is exploring commercialization opportunities.

An adaptable new device can transform into all the key electric components needed for artificial-intelligence hardware, for potential use in robotics and autonomous systems, a new study finds.

Brain-inspired or “neuromorphic” computer hardware aims to mimic the human brain’s exceptional ability to adaptively learn from experience and rapidly process information in an extraordinarily energy-efficient manner. These features of the brain are due in large part to its plastic nature —its ability to evolve its structure and function over time through activity such as neuron formation or “neurogenesis.”

“We hypothesized if we could mimic these neurogenesis behaviors in electrical hardware, we could make machines that learn throughout their life-spans,” says study senior author Shriram Ramanathan, an electrical engineer and materials scientist at Purdue University, in West Lafayette, Ind.

A team in Korea has used sound waves to connect tiny droplets of liquid metals inside a polymer casing. The novel technique is a way to make tough, highly conductive circuits that can be flexed and stretched to five times their original size.

Making stretchable electronics for skin-based sensors and implantable medical devices requires materials that can conduct electricity like metals but deform like rubber. Conventional metals don’t cut it for this use. To make elastic conductors, researchers have looked at conductive polymers and composites of metals and polymers. But these materials lose their conductivity after being stretched and released a few times.

Liquid metals, alloys that stay liquid at room temperature, are a more promising option. Gallium-based liquid metals, typically alloys of gallium and indium, have caught the most attention because of their low toxicity and high electrical and heat conductivity. They are also tough because of an oxide skin that forms on their surface, and they stick well to various substrates.

The team replicated different patterns of materials and found arrangements that would let water through more easily.

Artificial intelligence (AI) has been found to be useful in the creation of water filter materials and can quicken the process involved in making them, according to a study published today (Nov .30) in the journal ACS Central Science.


Creating a novel water purification system

From daily household faucet attachments to room-sized industrial systems, filter systems are used in a variety of items. However, it is difficult for current filtration membranes to filter water if the water is extremely dirty or has small, neutral molecules, such as boric acid, an insecticide used on crop plants.

Researchers at RMIT University have found an innovative way to rapidly remove hazardous microplastics from water using magnets.

Lead researcher Professor Nicky Eshtiaghi said existing methods could take days to remove microplastics from water, while their cheap and sustainable invention achieves better results in just one hour.

The team says they have developed adsorbents, in the form of a powder, that remove microplastics 1,000 times smaller than those currently detectable by existing .

Further studies of the meteorite are in peril, though.

A meteorite that fell in Somalia in 2020 is home to at least two minerals that are not found on our planet. The two minerals were identified by researchers at the University of Alberta, a press release said.

Large meteorites are rare but do occur, such as the one that fell near the town of El Ali in Somalia a couple of years ago. The celestial piece of rock weighs a massive 16.


University of Alberta.

Tons of space material enters the Earth’s atmosphere every day and burn up instantly. Very few actually survive the journey through the atmosphere and hit the ground, after which these space rocks are referred to as meteorites.

A crystal’s shape is determined by its inherent chemistry, a characteristic that ultimately determines its final form from the most basic of details. But sometimes the lack of symmetry in a crystal makes the surface energies of its facets unknowable, confounding any theoretical prediction of its shape.

Theorists at Rice University say they’ve found a way around this conundrum by assigning arbitrary latent energies to its surfaces or, in the case of two-dimensional materials, its edges.

Yes, it seems like cheating, but in the same way a magician finds a select card in a deck by narrowing the possibilities, a little algebraic sleight-of-hand goes a long way to solve the problem of predicting a crystal’s shape.