Blog

Archive for the ‘engineering’ category: Page 158

Jul 18, 2019

Electrical engineering team develops ‘beyond 5G’ wireless transceiver

Posted by in categories: computing, engineering, internet, nanotechnology

A new wireless transceiver invented by electrical engineers at the University of California, Irvine boosts radio frequencies into 100-gigahertz territory, quadruple the speed of the upcoming 5G, or fifth-generation, wireless communications standard.

Labeled an “end-to-end transmitter-receiver” by its creators in UCI’s Nanoscale Communication Integrated Circuits Labs, the 4.4-millimeter-square silicon chip is capable of processing digital signals significantly faster and more energy-efficiently because of its unique digital-analog architecture. The team’s innovation is outlined in a paper published recently in the IEEE Journal of Solid-State Circuits.

“We call our chip ‘beyond 5G’ because the combined speed and data rate that we can achieve is two orders of magnitude higher than the capability of the new wireless standard,” said senior author Payam Heydari, NCIC Labs director and UCI professor of electrical engineering & computer science. “In addition, operating in a higher frequency means that you and I and everyone else can be given a bigger chunk of the bandwidth offered by carriers.”

Jul 16, 2019

Artificial intelligence designs metamaterials used in the invisibility cloak

Posted by in categories: engineering, particle physics, robotics/AI

Metamaterials are artificial materials engineered to have properties not found in naturally occurring materials, and they are best known as materials for invisibility cloaks often featured in sci-fi novels or games. By precisely designing artificial atoms smaller than the wavelength of light, and by controlling the polarization and spin of light, researchers achieve new optical properties that are not found in nature. However, the current process requires much trial and error to find the right material. Such efforts are time-consuming and inefficient; artificial intelligence (AI) could provide a solution for this problem.

The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH have developed a design with a higher degree of freedom that allows researchers to choose materials and design photonic structures arbitrarily by using deep learning. Their findings are published in several journals including Applied Materials and Interfaces, Nanophotonics, Microsystems & Nanoengineering, Optics Express, and Scientific Reports.

AI can be trained with a vast amount of data, and it can learn designs of various and the correlation between photonic structures and their optical properties. Using this training process, it can provide a that makes a photonic structure with desired optical properties. Once trained, it can provide a desired design promptly and efficiently. This has already been researched at various institutions in the U.S. such as MIT, Stanford University and Georgia Institute of Technology. However, the previous studies require inputs of materials and structural parameters beforehand, and adjusting photonic structures afterwards.

Jul 16, 2019

A Thin Layer of Aerogel Could Make Martian Farming Possible

Posted by in categories: alien life, engineering, environmental

Scientists think they’ve found a way to terraform Mars — and all it takes is a thin blanket of insulation over future space gardens.

A layer of aerogel just two to three centimeters thick may be enough to protect plants from the harshest aspects of life on Mars and create viable greenhouses in the process, according to research published Monday in the journal Nature Astronomy. While there are a host of other problems to solve before anyone can settle Mars, this terraforming plan is far more feasible than other ideas that scientists have proposed.

Two of the biggest challenges facing Martian settlers are the Red Planet’s deadly temperatures and unfiltered solar radiation, which is able to pass through Mars’ weak atmosphere and reach the surface, New Scientist reports. At night, it can reach −100 degrees Celsius, which is far too cold for any Earthly crops to survive.

Jul 14, 2019

Milestones in space travel: An illustrated timeline

Posted by in categories: engineering, space travel

We’ve come a long, long way since the U.S. first launched fruit flies into space in 1947. Since then, we’ve sent astronauts to the moon, installed an International Space Station in orbit and landed spacecraft on Mars. In the past couple of decades, private corporations such as SpaceX and Blue Origin have joined the fray and will likely play instrumental roles in aerospace engineering and space exploration. Here’s a look at some major advancements we’ve made in spacecraft technology and space exploration milestones over the past seven decades.

Jul 11, 2019

Scientists discover how to ‘lock’ heat in place using quantum mechanics

Posted by in categories: engineering, quantum physics

A ground-breaking study conducted by researchers from the National University of Singapore (NUS) has revealed a method of using quantum mechanical wave theories to “lock” heat into a fixed position.

Ordinarily, a source of diffuses through a conductive material until it dissipates, but Associate Professor Cheng-Wei Qiu from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering and his team used the principle of anti-parity-time (APT) symmetry to show that it is possible to confine the heat to a small region of a metal ring without it spreading over time.

In the future, this newly demonstrated phenomenon could be used to control in sophisticated ways and optimize efficacy in systems that need cooling. The results of the study were published on 12 April 2019 in the journal Science.

Jul 8, 2019

Team programs a humanoid robot to communicate in sign language

Posted by in categories: engineering, robotics/AI

For a robot to be able to “learn” sign language, it is necessary to combine different areas of engineering such as artificial intelligence, neural networks and artificial vision, as well as underactuated robotic hands. “One of the main new developments of this research is that we united two major areas of Robotics: complex systems (such as robotic hands) and social interaction and communication,” explains Juan Víctores, one of the researchers from the Robotics Lab in the Department of Systems Engineering and Automation of the UC3M.

The first thing the scientists did as part of their research was to indicate, through a simulation, the specific position of each phalanx in order to depict particular signs from Spanish Sign Language. They then attempted to reproduce this position with the robotic hand, trying to make the movements similar to those a human hand could make. “The objective is for them to be similar and, above all, natural. Various types of were tested to model this adaptation, and this allowed us to choose the one that could perform the gestures in a way that is comprehensible to people who communicate with sign language,” the researchers explain.

Finally, the scientists verified that the system worked by interacting with potential end-users. “The who have been in contact with the robot have reported 80 percent satisfaction, so the response has been very positive,” says another of the researchers from the Robotics Lab, Jennifer J. Gago. The experiments were carried out with TEO (Task Environment Operator), a for home use developed in the Robotics Lab of the UC3M.

Jul 8, 2019

Antigravity water transport system inspired by trees

Posted by in categories: engineering, solar power, sustainability, transportation

Efficiently moving water upward against gravity is a major feat of human engineering, yet one that trees have mastered for hundreds of millions of years. In a new study, researchers have designed a tree-inspired water transport system that uses capillary forces to drive dirty water upward through a hierarchically structured aerogel, where it can then be converted into steam by solar energy to produce fresh, clean water.

The researchers, led by Aiping Liu at Zhejiang Sci-Tech University and Hao Bai at Zhejiang University, have published a paper on the new transport and solar steam generation method in a recent issue of ACS Nano. In the future, efficient water transport methods have in and desalination.

“Our preparation method is universal and can be industrialized,” Liu told Phys.org. “Our materials have excellent properties and good stability, and can be reused many times. This provides the possibility for large-scale desalination and in the future.”

Jul 7, 2019

Demonstrations of DARPA’s Ground X-Vehicle Technologies

Posted by in categories: engineering, robotics/AI, transportation

DARPA’s Ground X-Vehicle Technologies (GXV-T) program aims to improve mobility, survivability, safety, and effectiveness of future combat vehicles without piling on armor. The demonstrations featured here show progress on technologies for traveling quickly over varied terrain and improving situational awareness and ease of operation.

These demonstrations feature technologies developed for DARPA by:

Continue reading “Demonstrations of DARPA’s Ground X-Vehicle Technologies” »

Jul 5, 2019

Multiplex Automated Genomic Engineering (MAGE)

Posted by in categories: biotech/medical, engineering, evolution

A machine that speeds up evolution is revolutionizing genome design and selection of designer microbes.

Jul 2, 2019

Mind-Uploading: The Impending Meta-System Transition of Humanity

Posted by in categories: biological, engineering, genetics, nanotechnology, neuroscience

The most probable mainstream non-invasive way to transfer human consciousness in the intermediate future, with initial stages in the 2030s, could be the convergence of optogenetics, nanotechnologies, neuroengineering, Cloud exocortex and an array of neurotechnologies allowing to connect our wetware directly to the Cloud.

Initially, each of us will have a personal exocortex in the Cloud, the third non-biological “de-cerebral” hemisphere, which will be in constant communication with the other two biological brain hemispheres.

At some point, this “third hemisphere,” will have a threshold information content and intimate knowledge of your biology, personality and other physical world attributes in order to seamlessly integrate with your persona as a holistic entity.