Blog

Archive for the ‘engineering’ category: Page 157

Aug 1, 2019

Nanotechnology for quantum computers, industry skills for physics students, technologies that make physics happen

Posted by in categories: computing, cosmology, engineering, nanotechnology, quantum physics

This week’s podcast features an interview with Ray LaPierre, who heads up the department of engineering physics at McMaster University in Canada. Ray talks to fellow Canadian Hamish Johnston about his research in semiconductor nanowires, in particular for use in photonics and quantum computers, and also shares his experiences of working at JDS Uniphase during the telecoms boom.

Physics World’s Anna Demming also joins the podcast to describe a flurry of new results in the emerging field of twistronics – where two layers of graphene are stacked on top of each other but twisted at a slight angle to each other. The discovery last year that bilayer graphene can become a superconductor if the two graphene layers are twisted at the so-called magic angle of 1.1º won Physics World’s 2018 Breakthrough of the Year, and since then the race has been on to investigate other angle-dependent properties of twisted bilayer graphene. Anna describes how different research teams are now trying to work out what causes these intriguing effects.

We also talk to industry editor Margaret Harris about the importance of technology and engineering for scientific progress. Margaret shares her own “light-bulb” moment, when she realized that new laser technology could have saved hours of experimental time during her PhD, and also highlights several articles in the latest Physics World Focus on Instruments and Vacuum that highlight how breakthrough scientific discoveries rely on developments in the enabling technologies – including the first images of a black hole that were revealed in April.

Aug 1, 2019

Amputee can feel objects again with prosthetic arm inspired by Luke Skywalker

Posted by in categories: biotech/medical, cyborgs, engineering, robotics/AI, transhumanism, weapons

About 17 years ago, Keven Walgamott lost his left hand and part of his forearm in an electrical accident. Now, Walgamott can use his thoughts to tell the fingers of his bionic hand to pick up eggs and grapes. The prosthetic arm he tested also allowed Walgamott to feel the objects he grasped.

A biomedical engineering team at the University of Utah created the “LUKE Arm,” named in honor of the robotic hand Luke Skywalker obtains in “Star Wars: The Empire Strikes Back” after Darth Vader slices off his hand with a lightsaber.

A new study published Wednesday in the journal Science Robotics explained how the arm revived the sensation of touch for Walgamott. The University of Chicago and the Cleveland Clinic were also involved in the study.

Jul 31, 2019

NASA agrees to work with SpaceX on orbital refueling technology

Posted by in categories: engineering, food, robotics/AI, space travel, sustainability

On Tuesday afternoon, NASA announced 19 new partnerships with 10 US companies to help bring more cutting-edge technologies closer to production use in spaceflight. There were a lot of useful engineering ideas here, such as precision landing systems and robotic plant farms, but perhaps the most intriguing one involved the rocket company SpaceX and two of NASA’s field centers—the Glenn Research Center in Ohio and the Marshall Space Flight Center in Alabama.

“SpaceX will work with Glenn and Marshall to advance technology needed to transfer propellant in orbit, an important step in the development of the company’s Starship space vehicle,” the NASA news release states. This is a significant announcement for reasons both technical and political.

Jul 31, 2019

Soft wearable health monitor uses stretchable electronics

Posted by in categories: biotech/medical, computing, engineering, health, mobile phones, wearables

A wireless, wearable monitor built with stretchable electronics could allow comfortable, long-term health monitoring of adults, babies and small children without concern for skin injury or allergic reactions caused by conventional adhesive sensors with conductive gels.

The soft and conformable monitor can broadcast electrocardiogram (ECG), heart rate, respiratory rate and motion activity data as much as 15 meters to a portable recording device such as a smartphone or tablet computer. The electronics are mounted on a stretchable substrate and connected to gold, -like electrodes through printed connectors that can stretch with the medical film in which they are embedded.

“This health monitor has a key advantage for young children who are always moving, since the soft conformal device can accommodate that activity with a gentle integration onto the skin,” said Woon-Hong Yeo, an assistant professor in the George Woodruff School of Mechanical Engineering and Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology. “This is designed to meet the electronic health monitoring needs of people whose sensitive skin may be harmed by conventional monitors.”

Jul 28, 2019

These 3 teens just rocked an international robotics competition in Australia

Posted by in categories: education, engineering, robotics/AI

Three New Jersey teens brought home two international awards for their artificial intelligence robot, who competed at the International Robocup Junior Championship in Sydney, Australia earlier this month.

The team — made up of high school juniors Julian Lee of Livingston and Jeffrey Cheng from Bridgewater, and senior Alexander Lisenko, also of Bridgewater — won the third place World Title for Individual Team Tournament, and the Judge’s Award for Best Rescue Engineering Strategy in the Rescue Maze League.

The trio belongs to Storming Robots, a New Jersey-based Robotics Learning Lab, and competed against teams of 14- to 19-year-olds from around the world in the July 4–9 contest.

Jul 26, 2019

New cause of cell aging discovered

Posted by in categories: biotech/medical, engineering, life extension

New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works. The findings potentially pave the way for better cancer treatments and revolutionary new drugs that could vastly improve human health in the twilight years.

The work, from Assistant Professor of Chemical Engineering and Materials Science Nick Graham and his team in collaboration with Scott Fraser, Provost Professor of Biological Sciences and Biomedical Engineering, and Pin Wang, Zohrab A. Kaprielian Fellow in Engineering, was recently published in the Journal of Biological Chemistry.

“To drink from the fountain of youth, you have to figure out where the fountain of youth is, and understand what the fountain of youth is doing,” Graham said. “We’re doing the opposite; we’re trying to study the reasons cells age, so that we might be able to design treatments for better aging.”

Jul 24, 2019

‘Boss’ Gene May Be the Answer to Next Steps in Genomic Engineering

Posted by in categories: biotech/medical, engineering

Successful manipulation of optogenomic interfaces can change our entire medical approach to many common neurological abnormalities, as well as better our interactions with machines.

Jul 23, 2019

An Interview with Professor George Church

Posted by in categories: biotech/medical, engineering, genetics, life extension

Recently, we had the opportunity to interview Professor George Church, a well-known geneticist and rejuvenation expert whom we have previously interviewed. Prof. Church’s company, Rejuvenate Bio, will be launching a clinical trial to test a rejuvenation therapy in dogs this fall.

In your recent paper on enabling large-scale genome editing, you talked about manipulating endogenous transposable elements with the help of dead Cas9 base editors. At Ending Age-Related Diseases, Andrei Gudkov spoke about the super mutagenic phenotype that arises from the expression of LINE1 reverse transcriptase. In this context, he mentioned the possibility of the retrobiome (as he referred to it) being the main driver of all types of cellular damage, which is consequently improperly addressed due to immunosenescence. Do you share his views on the contribution of LINEs and SINEs in aging? If not, why?

Yes. That is one of the reasons why we explored the tech for editing of repeats. We are now extending this to the germline engineering of repeats.

Jul 22, 2019

A Faster Way to Rearrange Atoms Could Lead to Powerful Quantum Sensors

Posted by in categories: computing, engineering, particle physics, quantum physics

The fine art of adding impurities to silicon wafers lies at the heart of semiconductor engineering and, with it, much of the computer industry. But this fine art isn’t yet so finely tuned that engineers can manipulate impurities down to the level of individual atoms.

As technology scales down to the nanometer size and smaller, though, the placement of individual impurities will become increasingly significant. Which makes interesting the announcement last month that scientists can now rearrange individual impurities (in this case, single phosphorous atoms) in a sheet of graphene by using electron beams to knock them around like croquet balls on a field of grass.

The finding suggests a new vanguard of single-atom electronic engineering. Says research team member Ju Li, professor of nuclear science and engineering at MIT, gone are the days when individual atoms can only be moved around mechanically—often clumsily on the tip of a scanning tunneling microscope.

Jul 20, 2019

AI Superpowers — China and Silicon Valley — Kai-Fu Lee

Posted by in categories: employment, engineering, robotics/AI

Lex Fridman, a Postdoctoral Associate at the MIT AgeLab, had a conversation with Kai-Fu Lee on Chinese soul, Difference between cultures of AI engineering, Role of data in near-term impact of AI, Impact of AI on jobs, Facing mortality and other issues.


Lex Fridman, had a conversation with Kai-Fu Lee on Chinese soul, Difference between cultures of AI engineering, Role of data in near-term impact of AI, Impact of AI on jobs, Facing mortality.