Blog

Archive for the ‘particle physics’ category: Page 255

May 14, 2022

Space Has Invisible Walls Created by Mysterious ‘Symmetrons,’ Scientists Propose

Posted by in categories: particle physics, space

Inara TabirAdmin.

As a trans woman this is a dream I yearn for.

J Bear BellOk. I can’t see it ever being a popular choice amongst traditionally gendered men, but for a trans woman this could be a huge and amazing gift.

Continue reading “Space Has Invisible Walls Created by Mysterious ‘Symmetrons,’ Scientists Propose” »

May 14, 2022

A physicist explains the standard model of particle physics may be broken

Posted by in category: particle physics

Roger Jones, a physicist working at the Large Hadron Collider (LHC) at Cern, explains how the standard model of particle physics may be broken.

May 14, 2022

Mysterious invisible walls may have been discovered in outer space

Posted by in categories: particle physics, space

“Scientists suspect that a ”fifth force” may be at work in space. This force, which they believe is mediated by a hypothetical particle called a symmetron is responsible for creating invisible walls in space.

The walls aren’t necessarily like the walls of a room. Instead, they are more like barriers. And, they could help explain an intriguing part of space that has left astronomers scratching their heads for quite a while.

BGR.

Continue reading “Mysterious invisible walls may have been discovered in outer space” »

May 13, 2022

Tailored single photons: Optical control of photons as the key to new technologies

Posted by in categories: nanotechnology, particle physics, quantum physics

Physicists from Paderborn University have developed a novel concept for generating individual photons—tiny particles of light that make up electromagnetic radiation—with tailored properties, the controlled manipulation of which is of fundamental importance for photonic quantum technologies. The findings have now been published in the journal Nature Communications.

Professor Artur Zrenner, head of the “nanostructure optoelectronics” research group, explains how tailored desired states have so far posed a challenge: “Corresponding sources are usually based on light emissions from individual semiconductor quantum emitters, which generate the photons. Here, the properties of the emitted photons are defined by the fixed properties of the quantum emitter, and can therefore not be controlled with full flexibility.”

To get around the problem, the scientists have developed an all-optical, non-linear method to tailor and control single photon emissions. Based on this concept, they demonstrate laser-guided energy tuning and polarization control of photons (i.e., the light frequency and direction of oscillation of electromagnetic waves).

May 13, 2022

Alpha particles and alpha radiation: Explained

Posted by in category: particle physics

Alpha particles are also known as alpha radiation.


Alpha particles, also known as alpha radiation, are the star players in the game of alpha decay — here’s everything you need to know.

May 13, 2022

New Microscope Technique Powerful Enough to Watch Atoms Vibrate

Posted by in categories: information science, particle physics

A team of Cornell University engineers developed a new microscopy technique that’s powerful enough to spot an individual atom in three dimensions — and create an image so clear that the only blurriness comes from the movement of that atom itself.

The technique, which according to the study published Thursday in the journal Science relies on an electron microscope coupled with sophisticated 3D reconstruction algorithms, doesn’t just set a new record in atom resolution. The researchers even say this might be as good as microscopy gets.

“This doesn’t just set a new record,” lead author and Cornell engineer David Muller said in a press release. “It’s reached a regime which is effectively going to be an ultimate limit for resolution. We basically can now figure out where the atoms are in a very easy way. This opens up a whole lot of new measurement possibilities of things we’ve wanted to do for a very long time.”

May 12, 2022

Creating a less fragile diamond using fullerenes

Posted by in categories: materials, particle physics

A team of researchers from China, Germany and the U.S. has developed a way to create a less fragile diamond. In their paper published in the journal Nature, the group describes their approach to creating a paracrystalline diamond and possible uses for it.

Prior research has shown that diamond is the hardest known material but it is also fragile—despite their hardness, can be easily cut or even smashed. This is because of their ordered atomic structure. Scientists have tried for years to synthesize diamonds that retain their hardness but are less fragile. The team has now come close to achieving that goal.

Currently, the way to create diamonds is to place a carbon-based material in a vice-like device where it is heated to very high temperatures while it is squeezed very hard. In this new effort, the researchers have used the same approach to create a less ordered type of diamond but have added a new twist—the carbon-based material was a batch of fullerenes, also known as buckyballs ( arranged in a hollow spherical shape). They heated the material to between 900 and 1,300 °C at pressures of 27 to 30 gigapascals. Notably, the pressure exerted was much lower than is used to make commercial diamonds. During processing, the spheres were forced to collapse, and they formed into transparent paracrystalline diamonds which could be extracted at room temperature.

May 12, 2022

Bohr’s ‘New’ Model of the atom: What it is and why it matters

Posted by in category: particle physics

May 12, 2022

Unusual quantum state of matter observed for the first time

Posted by in categories: particle physics, quantum physics

It’s not every day that someone comes across a new state of matter in quantum physics, the scientific field devoted to describing the behavior of atomic and subatomic particles in order to elucidate their properties.

May 11, 2022

A new method for exploring the nano-world

Posted by in categories: biotech/medical, nanotechnology, particle physics, sustainability

Scientists at the Max Planck Institute for the Science of Light (MPL) and Max-Planck-Zentrum für Physik und Medizin (MPZPM) in Erlangen present a large step forward in the characterization of nanoparticles. They used a special microscopy method based on interfereometry to outperform existing instruments. One possible application of this technique may be to identify illnesses.

Nanoparticles are everywhere. They are in our body as , lipid vesicles, or viruses. They are in our drinking water in the form of impurities. They are in the air we breath as pollutants. At the same time, many drugs are based on the delivery of , including the vaccines we have recently been given. Keeping with the pandemics, quick tests used for the detection the SARS-Cov-2 are based on nanoparticles too. The red line, which we monitor day by day, contains myriads of gold nanoparticles coated with antibodies against proteins that report infection.

Technically, one calls something a nanoparticle when its size (diameter) is smaller than one micrometer. Objects of the order of one micrometer can still be measured in a normal microscope, but particles that are much smaller, say smaller than 0.2 micrometers, become exceedingly difficult to measure or characterize. Interestingly, this is also the size range of viruses, which can become as small as 0.02 micrometers.