Toggle light / dark theme

Standard Model Stays Strong for Leptons

Newly released data taken using the Belle II experiment at KEK in Japan and the LHCb experiment at CERN in Switzerland show no sign of a possible anomaly that researchers think could provide a route to overturning the standard model of particle physics [13].

According to the standard model, electrons, muons, and tau leptons should all behave identically when subjected to any of the fundamental forces of nature. Over a decade ago, researchers began questioning the validity of this assumption—known as lepton universality—when they observed high-energy particle decays that deviated from standard-model predictions. Specifically, the observations concerned the decay of B mesons into various leptons, with the experiments hinting that a few more tau leptons were being produced than expected. Excitement built among particle physicists, who hoped they were on the cusp of finding the long-sought standard-model violation that would uncover new physical phenomena. Hopes rose further as other experiments found hints of lepton-universality violations in the decay of B mesons into electrons and muons, but the signals remained too small to rule out experimental artifacts.

Then at the end of last year, hopes began to fade when the LHCb Collaboration released data for B-meson decays involving electrons and muons that exactly matched standard-model predictions [2, 3]. Now data from the Belle II Collaboration for a different B-meson decay involving electrons and muons dim those hopes further [1]. The study provides the most precise lepton-universality test yet in such decays. But researchers haven’t yet given up on leptons unlocking a door to new physics, says Belle II Collaboration member Henrik Junkerkalefeld of the University of Bonn, Germany. He notes that, although the results provide new constraints on the options for undiscovered physics, they don’t completely rule them all out.

Decoding the Mysteries of the “Wonder Material” Graphene Through Rainbow Scattering

New research uses protons to shine a light on the structure and imperfections of this two-dimensional wonder material.

Graphene is a two-dimensional wonder material that has been suggested for a wide range of applications in energy, technology, construction, and more since it was first isolated from graphite in 2004.

This single layer of carbon atoms is tough yet flexible, light but with high resistance, with graphene.

CERN Physicists Measure Higgs Boson’s Mass with Unprecedented Precision

The ATLAS and CMS collaborations at CENR’s Large Hadron Collider (LHC) have been making ever more precise measurements of the Higgs boson’s mass since the particle’s discovery.

The new ATLAS measurement combines two results: a new Higgs boson mass measurement based on an analysis of the particle’s decay into two high-energy photons (diphoton channel) and an earlier mass measurement based on a study of its decay into four leptons (four-lepton channel).

The new measurement in the diphoton channel, which combines analyses of the full ATLAS data sets from Runs 1 and 2 of the LHC, resulted in a mass of 125.22 billion electronvolts (GeV) with an uncertainty of only 0.14 GeV.

Quantum 101 Episode 5: Quantum Entanglement Explained

Quantum entanglement is one of the most intriguing and perplexing phenomena in quantum physics. It allows physicists to create connections between particles that seem to violate our understanding of space and time.

This video discusses what quantum entanglement really is, and the experiments that help us understand it. The results of these experiments have applications in new technologies that will forever change our world.

Join Katie Mack, Perimeter Institute’s Hawking Chair in Cosmology and Science Communication, over 10 short forays into the weird, wonderful world of quantum science. Episodes are published weekly, subscribe to our channel so you don’t miss an update.

Want to learn more about quantum concepts? Visit https://perimeterinstitute.ca/quantum-101-quantum-science-explained to access free resources.

Follow Perimeter:
Twitter: https://twitter.com/Perimeter.
LinkedIn: https://www.linkedin.com/company/perimeter-institute/
Instagram: https://www.instagram.com/perimeterinstitute/
Facebook: https://www.facebook.com/pioutreach.

Perimeter Institute (charitable registration number 88,981 4323 RR0001) is the world’s largest independent research hub devoted to theoretical physics, created to foster breakthroughs in the fundamental understanding of our universe, from the smallest particles to the entire cosmos. Be part of the equation: https://perimeterinstitute.ca/donate

Giant alien-like virus structures with arms and tails found in the US

If there’s one thing the Covid pandemic taught us, it’s that viruses shouldn’t be underestimated.

People are, therefore, taking note after scientists discovered a whole new range of giant virus-like particles (VLP) that have taken on “previously unimaginable shapes and forms.”

The microscopic agents, resembling everything from stars to monsters, were found in just a few handfuls of forest soil.

Measuring Decays with Rock Dating Implications

Researchers revisit a neglected decay mode with implications for fundamental physics and for dating some of the oldest rocks on Earth and in the Solar System.

With a half-life of 1.25 billion years, potassium-40 does not decay often, but its decays have a big impact. As a relatively common isotope (0.012% of all potassium) of a very common metal (2.4% by mass of Earth’s crust), potassium-40 is one of the primary sources of radioactivity we encounter in daily life. Its decays are the primary source of argon-40, which makes up almost 1% of the atmosphere, and the copious amount of heat released from these decays threw off early estimates of the age of Earth made by Lord Kelvin. Potassium-40 is largely responsible for the meager radioactivity in our food (such as bananas), and it is a significant source of noise in some highly sensitive particle physics detectors. This isotope and its decay products are also useful tools in dating rocks and geological processes that go back to the earliest parts of Earth history. And yet some long-standing uncertainty surrounds these well-studied decays.

IceCube and NANOGrav open new windows onto the universe

Naoko Kurahashi Neilson was on a Zoom call when she saw it for the first time.

She and two PhD students—Mirco Hünnefeld of TU Dortmund University in Germany and Steve Sclafani of Drexel University in the United States—had received permission to review the results of their analysis. Using 10 years of data and 60,000 detections from the IceCube Neutrino Observatory, they were trying to map the emission of tiny, ghostly particles called neutrinos from the band of the Milky Way.

Kurahashi Neilson remembers the three of them staring at the image together. Slowly, they realized that they were, indeed, looking at the first-ever neutrino image of our galaxy.

Quantum reality with negative-mass particles

Physical interpretations of the time-symmetric formulation of quantum mechanics, due to Aharonov, Bergmann, and Lebowitz are discussed in terms of weak values. The most direct, yet somewhat naive, interpretation uses the time-symmetric formulation to assign eigenvalues to unmeasured observables of a system, which results in logical paradoxes, and no clear physical picture. A top–down ontological model is introduced that treats the weak values of observables as physically real during the time between pre-and post-selection (PPS), which avoids these paradoxes. The generally delocalized rank-1 projectors of a quantum system describe its fundamental ontological elements, and the highest-rank projectors corresponding to individual localized objects describe an emergent particle model, with unusual particles, whose masses and energies may be negative or imaginary. This retrocausal top–down model leads to an intuitive particle-based ontological picture, wherein weak measurements directly probe the properties of these exotic particles, which exist whether or not they are actually measured.