Blog

Archive for the ‘nuclear energy’ category: Page 86

Oct 11, 2020

A Milestone for Small Modular Reactors (SMR 2020)

Posted by in category: nuclear energy

Subject Zero Patreon
https://www.patreon.com/subjectzerolaboratories

A Milestone for Small Modular Reactors (SMR 2020)

Continue reading “A Milestone for Small Modular Reactors (SMR 2020)” »

Oct 7, 2020

Middle school student achieved nuclear fusion in his family playroom

Posted by in categories: education, nuclear energy, particle physics

O,.o.


Hours before his 13th birthday, Jackson Oswalt (USA) fused together two deuterium atoms using a reactor he had built in the playroom of his family home in Memphis, Tennessee.

Continue reading “Middle school student achieved nuclear fusion in his family playroom” »

Oct 7, 2020

Schematic of a Helical Fusion Reactor

Posted by in category: nuclear energy

(IMAGE 1) The superconducting coil consists of two pairs of helical coils and two sets of circular vertical magnetic field coils. In order to prevent the coil from moving or deforming due to the strong electromagnetic force acting on the superconducting coils, it is firmly supported by a supporting structure made of stainless steel with a high strength of 20 cm thick. These superconducting coils and supporting structures are cooled to cryogenic temperatures simultaneously.

Oct 6, 2020

UK completes fusion research facility

Posted by in categories: business, government, nuclear energy

Harworth Group plc has announced the completion of the UK Atomic Energy Authority’s (UKAEA’s) new nuclear fusion technology research facility at the Advanced Manufacturing Park in Rotherham, South Yorkshire. When it opens later this year, the 2500-square-metre facility will develop and test joining technologies for fusion materials and components, including novel metals and ceramics.

Property developer Harworth said completion of the GBP22 million (USD28 million) Fusion Technology facility triggers UKAEA’s 20-year lease with Harworth at a rent in line with other manufacturers at the Advanced Manufacturing Park. UKAEA will now prepare the building prior to taking formal occupation of it later this year.

The new facility is being funded as part of the government’s Nuclear Sector Deal delivered through the Department for Business, Energy and Industrial Strategy. An additional GBP2 million of investment came from Sheffield City Region’s Local Growth Fund.

Oct 1, 2020

Tests Confirm That Germany’s Massive Nuclear Fusion Machine Really Works

Posted by in category: nuclear energy

At the end of 2015, Germany switched on a new type of massive nuclear fusion reactor for the first time, and it was successfully able to contain a scorching hot blob of helium plasma.

But since then, there’s been a big question — is the device working the way it’s supposed to? That’s pretty crucial when you’re talking about a machine that could potentially maintain controlled nuclear fusion reactions one day, and thankfully, the answer is yes.

Continue reading “Tests Confirm That Germany’s Massive Nuclear Fusion Machine Really Works” »

Oct 1, 2020

A million pulses per second: How particle accelerators are powering X-ray lasers

Posted by in categories: nuclear energy, particle physics

Three United States DOE national laboratories – SLAC, Fermilab and Jefferson Lab – have partnered to build an advanced particle accelerator that will power the LCLS-II X-ray laser. Thanks to technology developed for nuclear and high-energy physics, the new X-ray laser will produce a nearly continuous wave of electrons and allow scientists to peer more deeply than ever before into the building blocks of life and matter.

Sep 30, 2020

Review on Gravitational wave propulsion

Posted by in categories: cosmology, nuclear energy, physics, space travel

Gravitational Wave Propulsion 🤔 ⤵️ check the abstract.


This paper sums up aftereffects of past examinations, including proposed models, so as to construct an advanced hypothetical structure for Gravitational Wave Propulsion. The structure com prises of groups of generators of gravitational waves, which have been hypothesized yet require experimentation, and models of push age. High effectiveness generators depend on cognizant sources, for example synchronized MEMS oscillators, the HTSC Gaser, in light of cognizant turn 2 changes in s-wave/d-wave super conductors, and the atomic electromagnetic wave to gravitational wave up-changing over transducer, in view of dineutrons. After gravitational wave age is effectively demonstrated in the research center, it will be pos-sible to apply an idea created in the field of cosmology. It was discovered that the back-ground vitality thick ness may offer mass to the graviton, which thus may permit gravi tons to produce push. Nearby foundation vitality thickness can be expanded by accusing materials of high dielectric steady in close ness to the wave producing components. Centered Gravitational Waves may likewise create singularities, where the radiation is changed over into a coulomb-like gravitational field. Gravitation al singularities will set a n-body floating framework among them selves, the rocket, and the rest of the assortments of the universe, with clear propulsive impacts. Uses of the current examination will prompt an extraordinary drive framework fit for empowering the quick investigation of the nearby planetary group, the neigh borhood star framework, and potentially the entire system. On a general basis, a vehicle traveling in space requires energy and a reaction mass to accelerate and reach useful speeds. Usually the reaction mass is the mass of the pro- pellant, which in most circumstances has also the role of energy source. Vehicles that are not required to carry re- action masses are more efficient and light weight, but con- ventional ones are limited in scope. It is a fact that, after extraordinary developments, space travel by rocket tech nology has reached its limits and a new paradigm is re- quired to make a big step forward in space propulsion; a step that should enable the exploration of nearby star systems and possibly the whole galaxy. These goals may seem unreachable with the current understanding of physics. Anyway with an open mind and a prag matic approach, it is well known that we are dealing with opinions that are often suggested by the lack of interdisciplinary approach es to complex problems. It often happened that when so called theoretical limits were found wrong, accidental dis- coveries have shown why the good theory was errone- ously applied the first time. An alternative to accidental discoveries are pieces of knowl Review on Gravitational wave propulsion Ching Lee University of Trento, Italy edge gathered from hun- dreds of research papers from different disciplines com- bined in an unusual way to create new concepts. They are normally rejected by experts of their single research field, thus painstaking efforts are required to simply communi- cate the new concept and let it grow in the laboratories. At the and of the last century numerous theoretical efforts have started to show that Gravitational Waves (GWs) have not only astronomical and astrophysicalrelevance, but they also have technological applica tions. Among them, sev- eral theories have approaches identified for telecommuni- cation, imaging, material processing, and space propul- sion. This paper summarizes results of past analyses, in cluding proposed examples, in order to build a modern theoreti cal framework for Gravitational Wave Propulsion. The framework consists of families of generators of gravitational waves, which have been theorized but still require experimentation, and models of thrust generation. High efficiency generators are based on co  herent sources, for instance synchronized MEMS oscillators, the HTSC Gaser, based on coherent spin-2 transitions in s-wave/d wave superconductors, and the nuclear electromagnetic wave to gravitational wave up-converting transducer, based on dineutrons. After gravitational wave generation is successfully proven in the laboratory, it will be pos- sible to apply a concept developed in the field of cosmology. It was found that the back- ground energy density may give mass to the graviton, which in turn may allow gravitons to produce thrust. Local background energy density can be increased by charging materials with high dielectric constant in close proximity to the wave generating elements. Focused Gravita tional Waves may also produce singularities, where the radiation is converted into a coulomb-like gravitational field. Gravitational singularities will set an n-body gravitating system among them selves, the spacecraft, and the remaining bodies of the universe, with obvious propulsive effects. Applications of the present anal ysis will lead to a unique propulsion system capable of enabling the fast exploration of the solar system, the local star system, and possibly the whole galaxy proposed models, so as to construct an advanced hypothetical structure for Gravitational Wave Propulsion. The structure com prises of groups of generators of gravitational waves, which have been hypothesized yet require experimentation, and models of push age. High effectiveness generators depend on cognizant sources, for example synchronized MEMS oscillators, the HTSC Gaser, in light of cognizant turn 2 changes in s-wave/d-wave super conductors, and the atomic electromagnetic wave to gravitational wave up-changing over transducer, in view of dineutrons. After gravitational wave age is effectively demonstrated in the research center, it will be pos-sible to apply an idea created in the field of cosmology. It was discovered that the back-ground vitality thick ness may offer mass to the graviton, which thus may permit gravi tons to produce push. Nearby foundation vitality thickness can be expanded by accusing materials of high dielectric steady in close ness to the wave producing components. Centered Gravitational Waves may likewise create singularities, where the radiation is changed over into a coulomb-like gravitational field. Gravitation al singularities will set a n-body floating framework among them selves, the rocket, and the rest of the assortments of the universe, with clear propulsive impacts. Uses of the current examination will prompt an extraordinary drive framework fit for empowering the quick investigation of the nearby planetary group, the neigh borhood star framework, and potentially the entire system. On a general basis, a vehicle traveling in space requires energy and a reaction mass to accelerate and reach useful speeds. Usually the reaction mass is the mass of the pro- pellant, which in most circumstances has also the role of energy source. Vehicles that are not required to carry re- action masses are more efficient and light weight, but con- ventional ones are limited in scope. It is a fact that, after extraordinary developments, space travel by rocket tech nology has reached its limits and a new paradigm is re- quired to make a big step forward in space propulsion; a step that should enable the exploration of nearby star systems and possibly the whole galaxy. These goals may seem unreachable with the current understanding of physics. Anyway with an open mind and a prag matic approach, it is well known that we are dealing with opinions that are often suggested by the lack of interdisciplinary approach es to complex problems. It often happened that when so called theoretical limits were found wrong, accidental dis- coveries have shown why the good theory was errone- ously applied the first time. An alternative to accidental discoveries are pieces of knowl Review on Gravitational wave propulsion Ching Lee University of Trento, Italy edge gathered from hun- dreds of research papers from different disciplines com- bined in an unusual way to create new concepts. They are normally rejected by experts of their single research field, thus painstaking efforts are required to simply communi- cate the new concept and let it grow in the laboratories. At the and of the last century numerous theoretical efforts have started to show that Gravitational Waves (GWs) have not only astronomical and astrophysicalrelevance, but they also have technological applica tions. Among them, sev- eral theories have approaches identified for telecommuni- cation, imaging, material processing, and space propul- sion. This paper summarizes results of past analyses, in cluding proposed examples, in order to build a modern theoreti cal framework for Gravitational Wave Propulsion. The framework consists of families of generators of gravitational waves, which have been theorized but still require experimentation, and models of thrust generation. High efficiency generators are based on co  herent sources, for instance synchronized MEMS oscillators, the HTSC Gaser, based on coherent spin-2 transitions in s-wave/d wave superconductors, and the nuclear electromagnetic wave to gravitational wave up-converting transducer, based on dineutrons. After gravitational wave generation is successfully proven in the laboratory, it will be pos- sible to apply a concept developed in the field of cosmology. It was found that the back- ground energy density may give mass to the graviton, which in turn may allow gravitons to produce thrust. Local background energy density can be increased by charging materials with high dielectric constant in close proximity to the wave generating elements. Focused Gravita tional Waves may also produce singularities, where the radiation is converted into a coulomb-like gravitational field. Gravitational singularities will set an n-body gravitating system among them selves, the spacecraft, and the remaining bodies of the universe, with obvious propulsive effects. Applications of the present anal ysis will lead to a unique propulsion system capable of enabling the fast exploration of the solar system, the local star system, and possibly the whole galaxy.

Sep 29, 2020

Compact Nuclear Fusion Reactor Is ‘Very Likely to Work,’ Studies Suggest

Posted by in category: nuclear energy

A series of research papers renews hope that the long-elusive goal of mimicking the way the sun produces energy might be achievable.

Sep 29, 2020

MIT Researchers Say Their Fusion Reactor Is “Very Likely to Work”

Posted by in category: nuclear energy

A team of researchers at MIT and other institutions say their “SPARC” compact fusion reactor should actually work — at least in theory, as they argue in a series of recently released research papers.

In a total of seven papers penned by 47 researchers from 12 institutions, the team argues that no unexpected impediments or surprises have shown up during the planning stages.

In other words, the research “confirms that the design we’re working on is very likely to work,” Martin Greenwald, deputy director of MIT’s Plasma Science and Fusion Center and project lead, told The New York Times.

Sep 22, 2020

Inside First Light Fusion’s fight to solve clean energy and save the planet

Posted by in category: nuclear energy

Nuclear energy with no meltdowns and barely any waste. Can nuclear fusion beat the skeptics?

Page 86 of 136First8384858687888990Last