Archive for the ‘materials’ category: Page 267
Aug 26, 2016
First Direct Proof of Stable Carbyne, The World’s Strongest Material
Posted by Shailesh Prasad in categories: materials, nanotechnology
Scientists have managed to develop a novel method to grow stable, ultra-long 1D carbon chains of a material that is twice as strong as carbon nanotubes and far stronger than diamonds.
Elemental carbon is extremely versatile, and scientists have long been able to create new carbon allotropes that make for super durable and multi-functioning materials—such as everyone’s favorite material, graphene.
The “carbon family” is one very resourceful family. But even with all these developments, carbyne remained elusive. In fact, it is the only form of carbon that has not been synthesized, even though researchers have been studying its properties for over 50 years.
Continue reading “First Direct Proof of Stable Carbyne, The World’s Strongest Material” »
Aug 25, 2016
Building devices from colloidal quantum dots
Posted by Karen Hurst in categories: materials, quantum physics
Meet the punk rock version of Device making via Q-Dots.
A wide range of materials can now be synthesized into semiconducting quantum dots. Because these materials grow from solutions, there is scope to combine quantum dots into devices by using simple, low-cost manufacturing processes. Kagan et al. review recent progress in tailoring and combining quantum dots to build electronic and optoelectronic devices. Because it is possible to tune the size, shape, and connectivity of each of the quantum dots, there is potential for fabricating electronic materials with properties that are not available in traditional bulk semiconductors.
Science, this issue p. [885][1]
Continue reading “Building devices from colloidal quantum dots” »
Aug 22, 2016
New Lighter, Tougher, and Bendable Concrete Aims to Revolutionize Roads
Posted by Shailesh Prasad in categories: materials, sustainability
Scientists in Singapore have created a new type of concrete that bends, but is more durable and sustainable than the typical concrete.
Scientists at Nanyang Technological University (NTU)-JTC Industrial Infrastructure Innovation Center have created a new type of concrete that is flexible and more durable than regular concrete. They call it ConFlexPave.
According to its inventors, ConFlexPave can greatly reduce the weight and thickness of precast pavement slabs, making them lighter and easier to transport and install — thus, halving the time needed for road work and new pavement. Also, because it is more sustainable, it requires less maintenance compared to conventional concrete.
Continue reading “New Lighter, Tougher, and Bendable Concrete Aims to Revolutionize Roads” »
Aug 17, 2016
DARPA’s EXTREME Program will Manipulate Light to Strengthen US National Security
Posted by Karen Hurst in categories: materials, security
It aims to introduce engineered optical materials (EnMats) and associated design tools for creating innovative optical systems with improved performance, new functionality, and drastically reduced size and weight.
It will do this by finding ways to manipulate light in ways beyond the conventions of classical reflection and refraction, delivering optical systems the size of a sugar cube.
If successful, EXTREME could introduce a new era in optics and imagers for national defense.
Aug 17, 2016
Revolution by Design: The Materials Genome Initiative
Posted by Karen Hurst in categories: biotech/medical, materials
Washington, DC — The creation of a new material has long been either an accident or a matter of trial and error. Steel, for instance, was developed over hundreds of years by people who didn’t know why what they were doing worked (or didn’t work). Generations of blacksmiths observed that iron forged in charcoal was stronger than iron that wasn’t, and iron that was forged in a very high-temperature, charcoal-fired furnace and rapidly cooled was even stronger, and so on.
While we’re still learning things about steel, we now have all kinds of recipes that we can use to make steels with different properties depending on the application, but those recipes took a lot of time, sweat and toil to develop. Wouldn’t it be great if we could skip over all the trials and errors and design new materials from scratch with the exact properties we want?
Aug 16, 2016
3DCeram 3D Prints Custom-Designed, Biocompatible Cranial Prostheses
Posted by Karen Hurst in categories: 3D printing, materials
3D Printing for the skull.
Continue reading “3DCeram 3D Prints Custom-Designed, Biocompatible Cranial Prostheses” »
Aug 15, 2016
Self-Healing Textile: Welcome to the Age of Clothes That Can Heal Themselves
Posted by Shailesh Prasad in categories: innovation, materials
Researchers have developed a liquid material that repairs torn clothes, and it it able to withstand subsequent washes in a washing machine.
Every invention starts with an idea. And a group of researchers at Pennsylvania State University have a rather great idea—making a piece of torn fabric heal itself.
After years of working on the concept, the team is more than pleased to have created a biodegradable liquid material that allows torn fabric to bind to itself back together, sans needles.
Continue reading “Self-Healing Textile: Welcome to the Age of Clothes That Can Heal Themselves” »
Aug 13, 2016
Scientists are closing in on turning hydrogen into a metal
Posted by Shailesh Prasad in category: materials
Aug 13, 2016
Self-healing textiles not only repair themselves, but can neutralize chemicals
Posted by Klaus Baldauf in categories: biological, materials
UNIVERSITY PARK, Pa. — Someday, chemically protective suits made of fabric coated in self-healing, thin films may prevent farmers from exposure to organophosphate pesticides, soldiers from chemical or biological attacks in the field and factory workers from accidental releases of toxic materials, according to a team of researchers.
“Fashion designers use natural fibers made of proteins like wool or silk that are expensive and they are not self-healing,” said Melik C. Demire l, professor of engineering science and mechanics. “We were looking for a way to make fabrics self-healing using conventional textiles. So we came up with this coating technology.”
Continue reading “Self-healing textiles not only repair themselves, but can neutralize chemicals” »