Blog

Archive for the ‘materials’ category: Page 270

Jul 21, 2016

Facebook details a way to offer laser-based internet access

Posted by in categories: internet, materials

Have you wondered how Facebook might offer high-speed internet access using lasers? The company’s Connectivity Lab is happy to show you. It just published a research paper explaining laser beam technology can deliver up to 2Gbps to remote places. The trick, it says, is to use fluorescent optical fibers to collect the light instead of relying on traditional optics. Since the fibers don’t emit the same color that they’re absorbing, you can shine a brighter light at them (similar to a solar concentrator) and manage an extremely quick turnaround time of under 2 nanoseconds. Combine that with multi-stream data encoding and you get the ample bandwidth that’s normally reserved for WiFi and wired networks.

Facebook says it’s “investigating the feasibility” of shipping laser internet hardware based on this technology, but that may be more realistic than you think. The social network managed this feat using readily available materials that weren’t even meant for the purpose. It’s hoping that other organizations will craft optimized materials that are better-suited, and notes that an infrared-based system might hit speeds of up to 10Gbps. As important as Facebook’s findings might be, they’re only just the beginning.

Read more

Jul 20, 2016

Payload designed to show that useful, high value goods can economically be produced in low earth orbit, opening the space frontier for Earth-focused manufacturing

Posted by in categories: materials, space travel

MOFFETT FIELD, CA. Made In Space, Inc. (Made In Space) and Thorlabs, Inc. (Thorlabs) will send a microgravity-optimized, miniature fiber drawing system to the International Space Station (ISS) to manufacture high-value-to-mass ZBLAN optical fiber via a cooperative agreement with The Center for Advancement of Science In Space (CASIS). The payload, called the “Made In Space Optical Fiber Production in Microgravity Experiment” (Fiber Payload) is currently scheduled to be launched to the ISS in the first quarter of 2017. The Fiber Payload will produce test quantities of ZBLAN optical fiber in the persistent microgravity environment ISS provides, and be returned to the Earth shortly thereafter. Once returned to the Earth, the fiber will be tested and utilized. Based on the results from this initial experiment and market demand, Made In Space plans to develop and operate larger scale microgravity production facilities for ZBLAN and other microgravity enabled materials.

Read more

Jul 20, 2016

Thermal Separation of Complex Polymers

Posted by in categories: materials, particle physics

The Postnova TF2000 is an advanced thermal field flow fractionation (TF3) system that provides a highly efficient method of separating and characterising complex polymer samples such as natural or synthetic rubbers, starches and paints from approximately 10 kDa up to 100 MDa and more in organic and aqueous solvents.

The TF2000 uses a temperature gradient as the driving force for its separation of polymers and particles. Molecules affected by the thermal gradient undergo diffusion which enables separation by both their molar mass and chemical composition. This unique feature allows the separation of different materials having the same molar mass. The separation can be further optimized by the use of different eluents and various temperature programs.

Read more

Jul 20, 2016

Superhydrophobic coating repels blood cell damage

Posted by in categories: biotech/medical, materials

This is amazing. I can see so much usage for this technique in the future in battling blood cancers, hemophilia, and other treatments beyond heart surgery and kidney dialysis.


Coating dialysis tubes with a water-repellent material leaves red blood cells unscathed.

Read more

Jul 19, 2016

Can Synthetic Clays Save the World from Nuclear Waste Pollution?

Posted by in category: materials

Another option to a really old problem.


‘Specially structured synthetic clays capable of immobilizing radioactive species by ion exchange has been developed by Sridhar Komarneni, a materials scientist and Distinguished Professor of Clay Mineralogy.’

Read more

Jul 19, 2016

Naftalina viabiliza computador quântico a temperatura ambiente

Posted by in category: materials

Computadores qu nticos a temperatura ambiente.

É aí que entra a naftalina — mais especificamente, o material resultante da queima do naftaleno. A combustão gera um material à base de carbono, um pó fino que pode ser disperso em solventes como água ou etanol e depositado diretamente sobre uma pastilha de silício — depois de seco e visto ao microscópio o material se transforma em uma série de nanoesferas.

Bálint Náfrádi, da Universidade Politécnica Federal de Lausane, na Suíça, juntamente com colegas da Austrália e da Alemanha, descobriu que esse material consegue manter estáveis os spins dos elétrons em seu interior por até 175 nanossegundos — considera-se que a computação qu ntica pode se tornar prática a temperatura ambiente com qubits que sejam estáveis por mais do que 100 nanossegundos.

Continue reading “Naftalina viabiliza computador quântico a temperatura ambiente” »

Jul 19, 2016

World’s first ‪#‎graphene‬ battery product unveiled in Beijing

Posted by in categories: energy, materials

The portable battery can be fully recharged within 15 minutes, about 20 times faster than a Li-ion battery.

Read more

Jul 19, 2016

Implantable Artificial Kidney

Posted by in categories: biotech/medical, materials

This artificial kidney could be implanted directly into the patient.

Read more

Jul 18, 2016

New light harvesting potentials

Posted by in categories: materials, quantum physics

By narrowing the bandgap of titania and graphene quantum dots.

Researchers have found a method of harvesting light.


Griffith University researchers have discovered significant new potentials for light harvesting through narrowing the bandgap of titania and graphene quantum dots.

Continue reading “New light harvesting potentials” »

Jul 14, 2016

New light harvesting potentials uncovered

Posted by in categories: materials, quantum physics

New options in harvesting light.


Significant new potentials for light harvesting through narrowing the bandgap of titania and graphene quantum dots have been uncovered by scientists.

Read more