Blog

Archive for the ‘genetics’ category: Page 445

Sep 15, 2016

Programmable Biology Has Begun

Posted by in categories: bioengineering, biotech/medical, genetics, life extension, singularity

Scientists have completed reprogramming DNA on the largest scale ever, making the concept of superhumans a reality while advancing Singularity.


Cloned embryo.

Most of us like the idea of superpowers. Though we may never have the strength of Superman, we could be made stronger, faster, and even better-looking, with total control over our genome, or genetic makeup. What about becoming disease-resistant, weight gain resistant, and even slowing down the aging process? This might be possible in decades to come, as geneticists are now getting ever closer to, not just removing and replacing genes, but rewriting entire genomes. It sounds like the realm of science fiction. Yet, consider that geneticists at Harvard recently recoded the genome of a synthetic E. coli bacteria. Prof. George Church and colleagues conducted the study.

Continue reading “Programmable Biology Has Begun” »

Sep 14, 2016

Scientists develop revolutionary heart attack sensor

Posted by in categories: biotech/medical, genetics, nanotechnology

An international collaboration of scientists involving a team of researchers at Manchester led by Dr. David J. Lewis has developed a tiny electric sensor, which could potentially improve patient survival rates by telling doctors if a person has had a heart attack.

Cardiovascular diseases account for around 30 per cent of adult deaths in the 30–70 year age group, which is greater than the combined deaths from all types of cancer. The ability to diagnose cardiac disease is therefore of utmost concern to doctors. When someone has a heart attack, certain chemicals are released into their bloodstream in elevated amounts, and blood tests are therefore the key to diagnosis.

Lewis, from Manchester’s School of Materials, has worked with his colleagues and a team at India’s Institute of Nano Science and Technology (INST) since 2014 to develop a nanoscale sensor made from ‘few-layer black phosphorus’, a new 2D material, which was coated in Deoxyribonucleic Acid (DNA)/genetic material. The immobilised DNA binds to a chemical called myoglobin, which increases in blood plasma after a heart attack and can be detected and measured by a simple electrical test. This could have a major impact, as it is potentially the most rapid, sensitive, selective and accurate method currently available to detect if someone has elevated levels of myoglobin – the measurement of which is one of the methods used in hospitals to check if someone has suffered a heart attack. The researchers predict that its eventual introduction into the clinic could potentially improve patient survival rates after an attack.

Continue reading “Scientists develop revolutionary heart attack sensor” »

Sep 14, 2016

The Drugs That Built a Super Soldier Genetic and biological Enhancement of Soldiers

Posted by in categories: biotech/medical, genetics, military

https://youtube.com/watch?v=kUZn1Rh0HO8

Hmmmmm.


The drugs that built a super soldier : past.

Continue reading “The Drugs That Built a Super Soldier Genetic and biological Enhancement of Soldiers” »

Sep 13, 2016

More cancers are tied to obesity

Posted by in categories: biotech/medical, genetics, health

Interesting article overall; however, I have noticed many Gastric Bypass patients from my area who drastically loss weight quickly within a year had stomach, throat, and esophageal cancer. As with obesity being a trigger, I believe drastically changes with the body such as massive weight loss quickly could also trigger a cancer gene mutation. I would love to connect with others working of this type of research.


A review of more than a thousand studies has found solid evidence that being overweight or obese increases the risk for at least 13 types of cancer.

The study was conducted by a working group of the International Agency for Research on Cancer, part of the World Health Organisation.

Continue reading “More cancers are tied to obesity” »

Sep 12, 2016

Setting a Safe Course for Gene Editing Research

Posted by in categories: bioengineering, biotech/medical, genetics, military

This is actually pretty significant to see from DARPA; however, not a total shock given the importance of Synthetic Biology and various parties in the military understanding how CRISPR can be used as a weapon.


A new DARPA program could help unlock the potential of advanced gene editing technologies by developing a set of tools to address potential risks of this rapidly advancing field. The Safe Genes program envisions addressing key safety gaps by using those tools to restrict or reverse the propagation of engineered genetic constructs.

“Gene editing holds incredible promise to advance the biological sciences, but right now responsible actors are constrained by the number of unknowns and a lack of controls,” said Renee Wegrzyn, DARPA program manager. “DARPA wants to develop controls for gene editing and derivative technologies to support responsible research and defend against irresponsible actors who might intentionally or accidentally release modified organisms.”

Continue reading “Setting a Safe Course for Gene Editing Research” »

Sep 12, 2016

DARPA working on safe Gene Editing Research

Posted by in categories: bioengineering, biotech/medical, genetics

DARPA’s Safe Genes program aims to build a biosafety and biosecurity toolkit to reduce potential risks and encourage innovation in the field of genome editing

The Safe Genes program could help unlock the potential of advanced gene editing technologies by developing a set of tools to address potential risks of this rapidly advancing field. The Safe Genes program envisions addressing key safety gaps by using those tools to restrict or reverse the propagation of engineered genetic constructs.

“Gene editing holds incredible promise to advance the biological sciences, but right now responsible actors are constrained by the number of unknowns and a lack of controls,” said Renee Wegrzyn, DARPA program manager. “DARPA wants to develop controls for gene editing and derivative technologies to support responsible research and defend against irresponsible actors who might intentionally or accidentally release modified organisms.”

Continue reading “DARPA working on safe Gene Editing Research” »

Sep 10, 2016

IBM Patents Technology That Can Add Night Vision To Your Glasses

Posted by in categories: biological, genetics

IBM wants to give people night vision capabilities, and they are doing it using Google Glass. This patent “tricks” the eyes with red light in order to increase visibility when in a low light environment.

Upon entering a dark room, human eyes obviously take time to adjust in order to see clearly. That’s because there are two types of photoreceptors in our eyes — the rods and the cones. Rods are responsible for letting humans see in the dark; however, it takes around 30 minutes for our rods to fully adjust to the darkness.

Night vision is a very complicated biological process, but it seems that we may be able to tweak and enhance it, and we can do so without using genetic manipulation or any other equally invasive and transformative method. In fact, all we may need is glasses.

Continue reading “IBM Patents Technology That Can Add Night Vision To Your Glasses” »

Sep 10, 2016

Is Evolution Over? Synthetic Biology Anticipates Nature’s Next Steps

Posted by in categories: bioengineering, biological, evolution, genetics, sustainability

Synthetic biology is essentially an application of engineering principles to the fundamental molecular components of biology. Key to the process is the ability to design genetic circuits that reprogram organisms to do things like produce biofuels or excrete the precursors for pharmaceuticals, though whether this is commercially viable is another question.

MIT’s Jim Collins, one of the founders of synthetic biology, recently explained it to me as putting the engineering into genetic engineering.

“Genetic engineering is introducing a gene from species A to species B,” he said. “That’s the equivalent of replacing a red light bulb with a green light bulb. Synthetic biology is focused on designing the underlying circuitry expressing that red or green light bulb.”

Continue reading “Is Evolution Over? Synthetic Biology Anticipates Nature’s Next Steps” »

Sep 9, 2016

Aubrey de Grey & Matthew O’Connor AMA! • /r/Futurology

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

The Aubrey de Grey and Matthew O’Connor SENS AMA on reddit Monday 12th 11am PST.


I am Dr. Aubrey De Grey, biologist, gerontologist PhD and author of the book Ending Aging and Chief Science Officer at the SENS Research Foundation. I am here with researcher Dr. Matthew O’Connor from the MitoSENS project who is an expert on “allotopic expression” of mitochondrial genes. His team has been working on engineering mitochondrial genes to be expressed from the nucleus and targeted to the mitochondia as part of the MitoSENS approach to one of the damages of aging.

Each cell in the body is dependent on the efficient generation of cellular energy by mitochondria to stay alive. Critical to this process are genes encoded within the mitochondrial genome. Over time however, mutations in these genes occur as a result of constant exposure to reactive oxygen species produced by oxidative phosphorylation, the mitochondrial energy generation process. Unlike genes within the nucleus, mitochondria lack an efficient system to repair damaged DNA. This leads to accumulated mutations, resulting in mitochondrial defects and an increase in oxidative stress throughout the body. Closely correlated with this is the observation that organisms which age more slowly also consistently display lower rates of mitochondrial free radical damage. Thus, reversing and/or preventing damage to mitochondrial DNA may be a key factor in slowing the aging process.

Continue reading “Aubrey de Grey & Matthew O’Connor AMA! • /r/Futurology” »

Sep 8, 2016

Measuring forces in the DNA molecule

Posted by in categories: biotech/medical, genetics

DNA, our genetic material, normally has the structure of a twisted rope ladder. Experts call this structure a double helix. Among other things, it is stabilized by stacking forces between base pairs. Scientists at the Technical University of Munich (TUM) have succeeded at measuring these forces for the very first time on the level of single base pairs. This new knowledge could help to construct precise molecular machines out of DNA. The researchers published their findings in the journal Science.

Over 60 years ago, the researchers Crick and Watson identified the structure of deoxyribonucleic acid, which is more commonly known as DNA. They compared the double helix to a rope ladder that had been twisted into a spiral. The rungs of this ladder consisted of guanine/cytosine and thymine/adenine . But what keeps the DNA strands in that spiral structure?

Read more