RUPTURE follows Renee Morgan (Noomi Rapace), a single mom, who is deathly terrified of spiders. While in route to meet up with a friend, she is violently abducted by a group of strangers. After enduring intense yet strange questioning and examinations, some about her fear of spiders, Renee soon discovers that she is now the subject of an underground experiment. Her captors explain to her that she has a genetic abnormality that can potentially allow her to “rupture” and reveal her alien nature. Renee must find a way to escape before it is too late.
Archive for the ‘genetics’ category: Page 446
Mar 27, 2017
10 AMAZING Abilities HIDDEN in Your GENES
Posted by Shailesh Prasad in categories: biotech/medical, food, genetics
https://www.youtube.com/watch?v=xGZSm-6ng9k
Amazing Genes are HIDDEN inside of us; Science has found it. In 2014 one of the craziest science experiments by some incredible scientists at Oxford University found that less than 10% of human DNA is active, meaning that the majority of your genetic code is just sitting around doing nothing.
Narration provided by JaM Advertising New Mexico www.tasteofjam.com
Continue reading “10 AMAZING Abilities HIDDEN in Your GENES” »
Mar 26, 2017
Scientists find a low-cost way to build genomes from scratch
Posted by Bryan Gatton in categories: biotech/medical, computing, genetics
To put it mildly, sequencing and building a genome from scratch isn’t cheap. It’s sometimes affordable for human genomes, but it’s often prohibitively expensive (hundreds of thousands of dollars) whenever you’re charting new territory — say, a specific person or an unfamiliar species. A chromosome can have hundreds of millions of genetic base pairs, after all. Scientists may have a way to make it affordable across the board, however. They’ve developed a new method, 3D genome assembly, that can sequence and build genomes from the ground up for less than $10,000.
Where earlier approaches saw researchers using computers to stick small pieces of genetic code together, the new technique takes advantages of folding maps (which show how a 6.5ft long genome can cram into a cell’s nucleus) to quickly build out a sequence. As you only need short reads of DNA to make this happen, the cost is much lower. You also don’t need to know much about your sample organism going in.
As an example of what’s possible, the team completely assembled the three chromosomes for the Aedes aegypti mosquito for the first time. More complex organisms would require more work, of course, but the dramatically lower cost makes that more practical than ever. Provided the approach finds widespread use, it could be incredibly valuable for both biology and medicine.
Continue reading “Scientists find a low-cost way to build genomes from scratch” »
Mar 24, 2017
Scientists just changed the way we build genomes to make them 270,000 times cheaper
Posted by Shane Hinshaw in categories: biotech/medical, genetics, health
In 2003, the US Department of Defense and the National Institutes of Health announced that—13 years and $2.7 billion later—they had finally finished mapping the human genome.
But the quest to understand human genetics was far from over: Genomes, which are the entire layout of our 3 billion base pairs of DNA, vary dramatically from person to person. So mapping the first human genome was really just mapping a human genome (the patient’s identity was kept secret for privacy.) And even though shorter genetic sequencing is available, doctors studying rare genetic diseases need the full scope of a patient’s genetic material to find the problematic mutation. Finding these faulty sections of genes is like a microscopic version of Where’s Waldo among 3 billion people wearing stripes, a game that has cost $3 billion to play.
In a paper published (paywall) in Science on March 23, researchers from the Baylor College of Medicine, Massachusetts Institute of Technology, and Harvard University said they have figured a way to sequence the entirety of any genome for just $10,000, in a couple of weeks. Their test project? Re-sequencing the DNA of the mosquito species that spreads the Zika virus.
Mar 22, 2017
Researchers find a way to reverse antibiotic resistance in Mycobacterium tuberculosis
Posted by Simon Waslander in categories: biotech/medical, genetics
A team of researchers from Sweden, France, Belgium and Switzerland has found a way to reverse resistance to an antibiotic drug used to treat tuberculosis. In their paper published in the journal Science, the team describes how they screened compounds that activated different pathways to activate ethionaide, a compound used to treat tuberculosis.
The researchers are currently working with GlaxoSmithKline and Biotech Bioversys to further develop the small prototype molecule into a drug that can be mass produced and sold.
(Medical Xpress)—A team of researchers from Sweden, France, Belgium and Switzerland has found a way to reverse resistance to an antibiotic drug used to treat tuberculosis. In their paper published in the journal Science, the team describes how they screened compounds that activated different pathways to activate ethionaide, a compound used to treat tuberculosis.
Mar 19, 2017
The terrifying DNA discoveries that are making science-fiction fact
Posted by Dan Kummer in categories: biotech/medical, genetics, transhumanism
Imagine a world where parents can give birth to superbabies with bones so strong they’re impervious to a surgical drill and a heart less prone to failure. A world where a child has DNA from three parents, not two. A world where it’s possible for a woman to have her favorite movie star’s child simply by collecting a few of his skin cells. Genetic technology is making it all a reality, horrifying some and heartening others.
Reproductive advances are arriving so rapidly, we’ve already entered the realm of science-fiction and are on the verge of making truly astounding leaps.
For more, look to the new book “The Gene Machine: How Genetic Technologies Are Changing the Way We Have Kids — and the Kids We Have” by Bonnie Rochman.
Continue reading “The terrifying DNA discoveries that are making science-fiction fact” »
Mar 16, 2017
Chinese researchers announce designer baby breakthrough
Posted by Shane Hinshaw in categories: biotech/medical, genetics
Science has taken another step toward delivering the perfect newborn – or at least a bouncing baby free of certain genetic defects.
Chinese researchers used a genome editing technique called CRISPR to rid normal embryos of hereditary diseases that cause blood disorders and other ailments, according to New Scientist. Experts who reviewed the project told the publication that, even though it involved just six embryos, it carries promise.
“It is encouraging,” Robin Lovell-Badge, a human genome expert at the Francis Crick Institute in London, told New Scientist.
Continue reading “Chinese researchers announce designer baby breakthrough” »
Mar 16, 2017
Supercomputers may boost life expectancy
Posted by Simon Waslander in categories: biotech/medical, genetics, robotics/AI, supercomputing
This is nowhere near the power of the biggest systems, but still allows us to participate in research and development powered by supercomputer.
The idea that a computer could deliver an increase in life expectancy arises for a number of reasons, Prof Desplat says. Major gains are expected from the emergence of personalised medicine, care specifically tailored to match your genetic make-up. This will be driven in the not too distant future by “deep artificial intelligence learning” run on a supercomputer. These will also deliver faster more accurate early diagnosis, he says.
These computers are used in a variety of ways, from weather forecasting and climate modelling to energy usage modelling, statistical processing and seismic analysis when prospecting for oil and gas.
Continue reading “Supercomputers may boost life expectancy” »
Mar 15, 2017
George Church, Lumosity want those with good memory to ‘share it, not hoard it’
Posted by Steve Hill in categories: bioengineering, biotech/medical, genetics, neuroscience
George Church is very interested in your memories now.
Harvard researcher George Church is looking for people with exceptionally good memory to take part in a study aimed at finding genetic mechanisms that boost memory in research that could one day result in better drugs or diagnostic tests.
Church and other researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School’s Personal Genome Project, in collaboration with Lumos Labs — the makers of the brain-training game Lumosity — will look for common genetic markers in individuals with exceptional memories, attention and reaction speeds.
Continue reading “George Church, Lumosity want those with good memory to ‘share it, not hoard it’” »
Mar 13, 2017
Pain in the Neck: Using CRISPR to Prevent Tissue Damage and Neck Pain
Posted by Nancie Hunter in categories: bioengineering, biotech/medical, genetics
Bowles says. “We’re not changing what is in your genetic code. We’re altering what is expressed. Normally, cells do this themselves, but we are taking engineering control over these cells to tell them what to turn on and turn off.”
Now that researchers know they can do this, doctors will be able to modify the genes via an injection directly to the affected area and delay the degeneration of tissue. In the case of back pain, a patient may get a discectomy to remove part of a herniated disc to relieve the pain, but tissue near the spinal cord may continue to breakdown, leading to future pain. This method could stave off additional surgeries by stopping the tissue damage.
So far, the team has developed a virus that can deliver the gene therapy and has filed a patent on the system. They hope to proceed to human trials after collecting initial data, but Bowles believes it could be about 10 years before this method is used in patients.
Continue reading “Pain in the Neck: Using CRISPR to Prevent Tissue Damage and Neck Pain” »