Blog

Archive for the ‘evolution’ category: Page 10

Dec 24, 2023

Researchers develop effective method to genetically modify brain organoids

Posted by in categories: biotech/medical, evolution, genetics, neuroscience

Primates are among the most intelligent creatures with distinct cognitive abilities. Their brains are relatively large in relation to their body stature and have a complex structure. However, how the brain has developed over the course of evolution and which genes are responsible for the high cognitive abilities is still largely unclear. The better our understanding of the role of genes in brain development, the more likely it will be that we will be able to develop treatments for serious brain diseases.

Researchers are approaching these questions by knocking out or activating individual genes and thus drawing conclusions about their role in . To avoid as far as possible, brain organoids are used as an alternative. These three-dimensional cell structures, which are only a few millimeters in size, reflect different stages of brain development and can be genetically modified. However, such modifications are usually very complex, lengthy and costly.

Researchers at the German Primate Center (DPZ)—Leibniz Institute for Primate Research in Göttingen have now succeeded in genetically manipulating brain organoids quickly and effectively. The procedure requires only a few days instead of the usual several months and can be used for organoids of different primate species. The brain organoids thus enable of the function of genes at early stages of brain development in primates and help to better understand neurological diseases.

Dec 24, 2023

Brain Evolution Unlocked: Over 100 Genes That Make Us Uniquely Human

Posted by in categories: biotech/medical, evolution, neuroscience

The researchers found 139 genes that are common across the primate groups but highly divergent in their expression in human brains.

An international team led by researchers at the University of Toronto has uncovered over 100 genes that are common to primate brains but have undergone evolutionary divergence only in humans – and which could be a source of our unique cognitive ability.

The researchers, led by Associate Professor Jesse Gillis from the Donnelly Centre for Cellular and Biomolecular Research and the Department of Physiology at U of T’s Temerty Faculty of Medicine, found the genes are expressed differently in the brains of humans compared to four of our relatives – chimpanzees, gorillas, macaques, and marmosets.

Dec 24, 2023

New Fossil Analysis Has Just Re-Written The Human Evolution Timeline

Posted by in category: evolution

New dating analysis of existing human remains found worldwide has raised questions about some of our current histories of human evolution.

Dec 23, 2023

The First Stars and the Cosmic Dawn: A Journey to the Beginning of Time with Webb

Posted by in categories: alien life, chemistry, evolution, physics

Have you ever wondered what the universe looked like before the first stars were born? How did these stars form and how did they change the cosmos? These are some of the questions that the James Webb Space Telescope, or Webb for short, will try to answer. Webb is the most powerful and ambitious space telescope ever built, and it can observe the infrared light from the most distant and ancient objects in the universe, including the first stars. The first stars are extremely hard to find, because their light is very faint and redshifted by the expansion of the universe. But Webb has a huge mirror, a suite of advanced instruments, and a unique orbit that allows it to detect and study the first stars. By finding the first stars, Webb can learn a lot of information that can help us understand the early history and evolution of the universe, and test and refine the theoretical models and simulations of the first stars and their formation processes. Webb can also reveal new and unexpected phenomena and raise new questions about the first stars and their role in the universe. Webb is opening a new window to the cosmic dawn, where the first stars may shine. If you want to learn more about Webb and the first stars, check out this article1 from Universe Today. And don’t forget to like, share, and subscribe for more videos like this. Thanks for watching and see you next time. \
\
Chapters:\
00:00 Introduction\
01:09 Finding the first stars\
03:21 Technical challenges and scientific opportunities\
07:18 Challenges and limitations \
10:04 Outro\
10:31 Enjoy\
\
Best Telescopes for beginners:\
Celestron 70mm Travel Scope\
https://amzn.to/3jBi3yY\
\
Celestron 114LCM Computerized Newtonian Telescope\
https://amzn.to/3VzNUgU\
\
Celestron – StarSense Explorer LT 80AZ\
https://amzn.to/3jBRmds\
\
Visit our website for up-to-the-minute updates:\
www.nasaspacenews.com\
\
Follow us \
Facebook: / nasaspacenews \
Twitter: / spacenewsnasa \
\
Join this channel to get access to these perks:\
/ @nasaspacenewsagency \
\
#NSN #webb #firststars #cosmicdawn #astronomy #space #universe #infrared #telescope #nasa #esa #science #discovery #history #evolution #reionization #chemistry #physics #light #darkness #bigbang #galaxies #blackholes #supernovae #elements #life #youtube #video #education #entertainment #information #NASA #Astronomy

Dec 21, 2023

Apes’ Long-Term Social Memory Mirrors Human Ability

Posted by in category: evolution

Researchers found that chimpanzees and bonobos can recognize former groupmates they haven’t seen for over 25 years, showing more attention to those they had positive relationships with.

This study, conducted with apes at various zoos and sanctuaries, used eye-tracking technology to measure apes’ responses to photographs of familiar and unfamiliar individuals.

The findings suggest that such enduring social memory in apes could have played a foundational role in the evolution of human culture and interpersonal relationships.

Dec 21, 2023

A new mathematical language for biological networks

Posted by in categories: biological, evolution, genetics, health, mathematics

A team of researchers around Berlin mathematics professor Michael Joswig is presenting a novel concept for the mathematical modeling of genetic interactions in biological systems. Collaborating with biologists from ETH Zurich and Carnegy Science (U.S.), the team has successfully identified master regulators within the context of an entire genetic network.

The research results provide a coherent theoretical framework for analyzing biological networks and have been published in the Proceedings of the National Academy of Sciences.

It is a longstanding goal of biologists to determine the key genes and species that have a decisive impact on evolution, ecology, and health. Researchers have now succeeded in identifying certain genes as master regulators in biological networks. These key regulators exert greater control within the system and steer essential cellular processes. Previous studies have mainly focused on pairwise interactions within the system, which can be strongly affected by genetic background or biological context.

Dec 19, 2023

Ancient Insect Mysteries Solved: 312-Million-Year-Old Fossil Sheds Light on Behavior and Evolution

Posted by in categories: biological, evolution

Prehistoric insects, with their delicate and soft bodies, are challenging to preserve as fossils. While wings are more commonly fossilized, the bodies of these insects are often fragmented or incomplete, posing difficulties for scientific study. Paleontologists often rely on trace fossils to learn about these ancient insects, which are almost exclusively found as traces on fossil plants.

“We have a great fossil plant record,” said Richard J. Knecht, a Ph.D. candidate in the Department of Organismic and Evolutionary Biology at Harvard. “Further back in time, it’s the trace fossils that tell us more about the evolution and behavior of insects than the body fossils because plants and the trace fossils on them preserve very well. And the trace, as opposed to a body, won’t move over time and is always found where it was made.”

Dec 18, 2023

Improving Gut Health with Microbiome and Probiotics

Posted by in categories: biotech/medical, chemistry, evolution, life extension, neuroscience

View show notes here: https://bit.ly/3GJjQKz Become a member to receive exclusive content: https://peterattiamd.com/subscribe/ Sign up to receive Peter’s email newsletter: https://peterattiamd.com/newsletter/ Colleen Cutcliffe is an expert in molecular biology and co-founder of Pendulum Therapeutics, a company working to develop treatments for a variety of diseases by targeting the microbiome. In this episode, Colleen delves into the complexity of the microbiome, how it is tested, and how it changes over time. She explores how probiotics, prebiotics, and postbiotics affect the gut and makes a compelling case that well-developed products have the potential not only to enhance gut health but also to positively influence overall metabolic well-being. Colleen emphasizes the significance of a high-fiber diet in sustaining a thriving gut microbiome, shares insights on minimizing microbiome damage during antibiotic use, provides tips for fostering and preserving a healthy gut, and much more. We discuss: 0:00:00 — Intro 0:00:34 — Colleen’s background and current focus 0:03:08 — The basics of the microbiome 0:12:37 — The study of the human microbiome 0:17:42 — Categories of bacteria, and the implications on health of the rapid evolution of bacteria 0:27:51 — Methods for measuring and understanding the microbiome, and key indicators of microbiome health 0:39:52 — The important role of fiber for promoting gut health through the production of butyrate 0:47:21 — The case for manipulating gut bacteria via fecal microbiota transplant (FMT) 0:53:25 — Dynamics of the microbiome: the gut-brain connection and how antibiotics, nutrition, stress, and more impact the microbiome’s diversity and function 0:59:16 — Factors that influence the vaginal microbiom 1:03:46 — The effect of gut microbes on obesity and challenges with fecal transplants in people 1:06:25 — Beneficial strains of gut bacteria and strains commonly found in probiotics 1:16:35 — The difference between a probiotic and prebiotic, and how CFUs are a measure of the “active ingredient” 1:21:47 — Considerations about how probiotic strains are produced, and more on the meaning of CFU 1:31:12 — Mitigating the effect of antibiotics on the microbiome 1:39:58 — What do we know about the effect of artificial sweeteners on the gut microbiome? 1:47:02 — Why Akkermansia is a keystone strain with implications for metabolic health and an individual’s response to dietary interventions 1:58:14 — The essential steps necessary to develop a robust probiotic for optimal health support 2:01:45 — How Akkermansia helps control blood glucose, and potential implications of Akkermansia in weight loss, diabetes management, and more 2:22:46 — Pendulum Therapeutics’ commitment to rigorous product develop 2:29:54 — Details about the probiotic “Glucose Control” and other probiotics developed by Pendulum Therapeutics 2:38:43 — Further studies of Akkermansia that have been proposed or are underway ——– About: The Peter Attia Drive is a deep-dive podcast focusing on maximizing longevity, and all that goes into that from physical to cognitive to emotional health. With over 70 million episodes downloaded, it features topics including exercise, nutritional biochemistry, cardiovascular disease, Alzheimer’s disease, cancer, mental health, and much more. Peter Attia is the founder of Early Medical, a medical practice that applies the principles of Medicine 3.0 to patients with the goal of lengthening their lifespan and simultaneously improving their healthspan.

Dec 18, 2023

New ALICE measurements shed light on the dynamics of charm and beauty particles in quark-gluon plasma

Posted by in categories: cosmology, evolution, particle physics

When two lead ions collide at the Large Hadron Collider (LHC), they produce an extremely hot and dense state of matter in which quarks and gluons are not confined inside composite particles called hadrons. This fireball of particles—known as quark–gluon plasma and believed to have filled the universe in the first few millionths of a second after the Big Bang—expands and cools down rapidly. The quarks and gluons then transform back into hadrons, which fly out of the collision zone towards particle detectors.

In collisions where the two do not collide head on, the overlap region between the ions has an elliptic shape that leaves an imprint on the flow of hadrons. Measurements of such elliptic flow provide a powerful way to study quark–gluon plasma. In a recent paper posted to the arXiv preprint server, the ALICE collaboration reported a new measurement of the elliptic flow of hadrons containing heavy , which are particularly powerful probes of the plasma.

Unlike the and light quarks that make up the bulk of the quark–gluon plasma created in heavy-ion collisions, heavy charm and beauty quarks are produced in the initial stages of the collisions, before the plasma forms. They therefore interact with the plasma throughout its entire evolution, from its expansion and cooling to its transformation into hadrons.

Dec 13, 2023

Illuminating protein space with a programmable generative model

Posted by in categories: evolution, space

Evolution has produced a range of diverse proteins, and now a generative model called Chroma can expand that set by allowing the user to design new proteins and protein complexes with desired properties and functions.

Page 10 of 130First7891011121314Last