Blog

Archive for the ‘biotech/medical’ category: Page 2569

Apr 11, 2016

DARPA wants ‘shape-shifting’ vaccines that evolve with viruses

Posted by in categories: biotech/medical, genetics, life extension, particle physics

DARPA taking on the designer viruses and resistant fighting viruses that we hate. Who knows; they may finally find the fountain of youth in the process.


Vaccines are great, but they’re no match for most viruses in play at any given time. This is due largely in part to the ever-changing nature of viruses and the expense and difficulty in developing new vaccines to target them. DARPA wants that reality to change, citing the numerous concerning viruses, past and present, that affect humanity. Under the “INTERCEPT” program, DARPA seeks “shape-shifting” vaccines that adapt to kill off viruses as they evolve.

One of the biggest virus scares at the moment is the zika virus, but ebola was just recently a big issue and other viruses, including influenza and dengue, are a continuous problem. Once someone is infected, the virus is able to “mutate and morph as they reproduce inside their hosts,” says DARPA, making any vaccines quickly obsolete. If the agency’s new INTERfering and Co-Evolving Prevention and Therapy (INTERCEPT) program proves successful, though, things will change in a big way.

Continue reading “DARPA wants ‘shape-shifting’ vaccines that evolve with viruses” »

Apr 10, 2016

New 3D Printed Ovaries Allow Infertile Mice to Give Birth

Posted by in categories: 3D printing, biotech/medical, health

It might be time to rethink fertility treatment.

Here’s the scoop: scientists at Northwestern University 3D printed a functional ovary out of Jello-like material and living cells. When implanted into mice that had their ovaries removed, the moms regained their monthly cycle and gave birth to healthy pups.

The scientists presented their results last week at the Endocrine Society’s annual meeting in Boston.

Continue reading “New 3D Printed Ovaries Allow Infertile Mice to Give Birth” »

Apr 9, 2016

Nanoporous Material Displays Odd “Breathing” Habit

Posted by in categories: biotech/medical, materials

Simulation of DUT-49 atom arrangement when it has not contracted. Image: © F.-X. Coudert/CNRSHigh-tech sponges of infinitely small, nanoporous materials can capture and release gaseous or liquid chemicals in a controlled way. A team of French and German researchers from the Institut de Recherche de Chimie Paris (CNRS/Chimie ParisTech) and the Institut Charles Gerhardt de Montpellier (CNRS/Université de Montpellier/ENSCM) has developed and described one of these materials, DUT-49, whose behavior is totally counterintuitive.

When pressure is increased for a sample of DUT-49 to absorb more gas, the material contracts suddenly and releases its contents — as if, when inhaling, the lungs contracted and expelled the air that they contained. This work, published in Nature, makes it possible to envisage innovative behavior in materials science.

Capturing toxic molecules in ambient air, storing hydrogen, targeting drug release — the list of applications that could use flexible nanoporous materials is endless. These materials use the large surface area in their pores to capture and store gaseous or liquid molecules: this phenomenon is called adsorption. Their pores can adsorb impressive quantities of products; they keep getting bigger until they reach their flexibility limit.

Continue reading “Nanoporous Material Displays Odd ‘Breathing’ Habit” »

Apr 9, 2016

Scientists store digital images in DNA, and retrieves them perfectly

Posted by in categories: biotech/medical, business, computing

The digital universe — all the data contained in our computer files, historic archives, movies, photo collections and the exploding volume of digital information collected by businesses and devices worldwide — is expected to hit 44 trillion gigabytes by 2020.


Researchers have developed one of the first complete systems to store digital data in DNA — allowing companies to store data that today would fill a big box store supercenter in a space the size of a sugar cube.

Read more

Apr 8, 2016

Limb regeneration activation genes found in mammals and regenration of heart tissue and paws activitated in mice

Posted by in category: biotech/medical

If you trace our evolutionary tree way back to its roots — long before the shedding of gills or the development of opposable thumbs — you will likely find a common ancestor with the amazing ability to regenerate lost body parts.

Researchers have built a running list of the genes that enable regenerating animals to grow back a severed tail or repair damaged tissues. Surprisingly, they have found that genes important for regeneration in these creatures also have counterparts in humans. The key difference might not lie in the genes themselves but in the sequences that regulate how those genes are activated during injury.

A Duke study appearing April 6 in the journal Nature has discovered the presence of these regulatory sequences in zebrafish, a favored model of regeneration research. Called “tissue regeneration enhancer elements” or TREEs, these sequences can turn on genes in injury sites and even be engineered to change the ability of animals to regenerate.

Continue reading “Limb regeneration activation genes found in mammals and regenration of heart tissue and paws activitated in mice” »

Apr 8, 2016

Researchers edit genes in human embryos for second time

Posted by in category: biotech/medical

Researchers in China have edited the genes of human embryos to make cells resistant to HIV infection.


Researchers in China deploy CRISPR to alter genes in human embryos again — this time to make cells HIV-resistant.

Read more

Apr 8, 2016

Houston Methodist and NASA launching unique nanomedicine experiment

Posted by in categories: biotech/medical, particle physics

Along with equipment and supplies for the astronauts, the rocket was supposed to deliver several scientific experiments, including one Grattoni and his team spent five years perfecting: a study of how drug-like particles disperse through 100 tiny channels etched in a dime-sized microchip. […] it hit him: the rocket — and his work — was gone. Led by Grattoni, the center has secured coveted approval to conduct several experiments in coming years aboard the $100 billion space station, where scientists can exploit the lack of gravity about 200 miles above the Earth’s surface to perform studies they wouldn’t otherwise be allowed to do on Earth.

Read more

Apr 8, 2016

Vaccine Delivery Systems that May Protect Against Bioterror Threats & Outbreaks

Posted by in categories: biotech/medical, nanotechnology, terrorism

Most traditional vaccines have safety and efficacy issues, whereas particulate vaccine delivery systems—which utilize nano- or micro-particulate carriers to protect and deliver antigens—are efficient, stable, include molecules to bolster immune responses, and minimize adverse reactions due to the use of biocompatible biomaterials.

A new review, titled “Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens,” summarizes the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens.

Read more

Apr 8, 2016

Transcranial direct current stimulation can boost language comprehension: Stimulation of the brain’s left angular gyrus enhanced the comprehension of simple, two-word phrases

Posted by in categories: biotech/medical, neuroscience

How the human brain processes the words we hear and constructs complex concepts is still somewhat of a mystery to the neuroscience community. Transcranial direct current stimulation (tDCS) can alter our language processing, allowing for faster comprehension of meaningful word combinations, according to new research from the department of Neurology the Perelman School of Medicine at the University of Pennsylvania. The work is published in the Journal of Neuroscience.

“Integrating conceptual knowledge is one of the neural functions fundamental to human intelligence,” said the study’s first author Amy Price, a neuroscience graduate student at Penn. “For example, when we read or listen to a sentence, we need to combine, or integrate, the meaning of the words to understand the full idea of the sentence. We perform this process effortlessly on a daily basis but it is quite a complex process and little is known about the brain regions that support this ability.”

Semantic memory is our stored knowledge about the world, such as the meaning of words and objects. “We sought to understand how and in what part of the brain semantic representations are integrated into more complex ideas” said senior author Roy Hamilton, MD, MS, an assistant professor in the departments of Neurology and Physical Medicine & Rehabilitation, and director of the Laboratory for Cognition and Neural Stimulation at Penn. Recent findings from functional MRI scans (fMRI) and magnetoencephalography (MEG) have suggested the angular gyrus, a region of the brain known to be involved in language, number processing and spatial cognition, memory retrieval and attention, as a potential hub for semantic memory integration, specifically the left angular gyrus.

Continue reading “Transcranial direct current stimulation can boost language comprehension: Stimulation of the brain’s left angular gyrus enhanced the comprehension of simple, two-word phrases” »

Apr 8, 2016

Blood-brain barrier breakthrough reported by researchers

Posted by in categories: biotech/medical, neuroscience

The blood-brain barrier has stymied direct treatment of brain disorders. In a recently published study, a researcher reports finding a way to pass therapeutics through the barrier, using readily-available agents.

Read more