Blog

Archive for the ‘biological’ category: Page 213

Mar 19, 2013

Ten Commandments of Space

Posted by in categories: asteroid/comet impacts, biological, biotech/medical, cosmology, defense, education, engineering, ethics, events, evolution, existential risks, futurism, geopolitics, habitats, homo sapiens, human trajectories, life extension, lifeboat, military, neuroscience, nuclear energy, nuclear weapons, particle physics, philosophy, physics, policy, robotics/AI, singularity, space, supercomputing, sustainability, transparency

1. Thou shalt first guard the Earth and preserve humanity.

Impact deflection and survival colonies hold the moral high ground above all other calls on public funds.

2. Thou shalt go into space with heavy lift rockets with hydrogen upper stages and not go extinct.

Continue reading “Ten Commandments of Space” »

Mar 4, 2013

Human Brain Mapping & Simulation Projects: America Wants Some, Too?

Posted by in categories: biological, biotech/medical, complex systems, ethics, existential risks, homo sapiens, neuroscience, philosophy, robotics/AI, singularity, supercomputing

YANKEE.BRAIN.MAP
The Brain Games Begin
Europe’s billion-Euro science-neuro Human Brain Project, mentioned here amongst machine morality last week, is basically already funded and well underway. Now the colonies over in the new world are getting hip, and they too have in the works a project to map/simulate/make their very own copy of the universe’s greatest known computational artifact: the gelatinous wad of convoluted electrical pudding in your skull.

The (speculated but not yet public) Brain Activity Map of America
About 300 different news sources are reporting that a Brain Activity Map project is outlined in the current administration’s to-be-presented budget, and will be detailed sometime in March. Hoards of journalists are calling it “Obama’s Brain Project,” which is stoopid, and probably only because some guy at the New Yorker did and they all decided that’s what they had to do, too. Or somesuch lameness. Or laziness? Deference? SEO?

For reasons both economic and nationalistic, America could definitely use an inspirational, large-scale scientific project right about now. Because seriously, aside from going full-Pavlov over the next iPhone, what do we really have to look forward to these days? Now, if some technotards or bible pounders monkeywrench the deal, the U.S. is going to continue that slide toward scientific… lesserness. So, hippies, religious nuts, and all you little sociopathic babies in politics: zip it. Perhaps, however, we should gently poke and prod the hard of thinking toward a marginally heightened Europhobia — that way they’ll support the project. And it’s worth it. Just, you know, for science.

Going Big. Not Huge, But Big. But Could be Massive.
Both the Euro and American flavors are no Manhattan Project-scale undertaking, in the sense of urgency and motivational factors, but more like the Human Genome Project. Still, with clear directives and similar funding levels (€1 billion Euros & $1–3 billion US bucks, respectively), they’re quite ambitious and potentially far more world changing than a big bomb. Like, seriously, man. Because brains build bombs. But hopefully an artificial brain would not. Spaceships would be nice, though.

Continue reading “Human Brain Mapping & Simulation Projects: America Wants Some, Too?” »

Feb 8, 2013

Machine Morality: a Survey of Thought and a Hint of Harbinger

Posted by in categories: biological, biotech/medical, engineering, ethics, evolution, existential risks, futurism, homo sapiens, human trajectories, robotics/AI, singularity, supercomputing

KILL.THE.ROBOTS
The Golden Rule is Not for Toasters

Simplistically nutshelled, talking about machine morality is picking apart whether or not we’ll someday have to be nice to machines or demand that they be nice to us.

Well, it’s always a good time to address human & machine morality vis-à-vis both the engineering and philosophical issues intrinsic to the qualification and validation of non-biological intelligence and/or consciousness that, if manifested, would wholly justify consideration thereof.

Uhh… yep!

But, whether at run-on sentence dorkville or any other tech forum, right from the jump one should know that a single voice rapping about machine morality is bound to get hung up in and blinded by its own perspective, e.g., splitting hairs to decide who or what deserves moral treatment (if a definition of that can even be nailed down), or perhaps yet another justification for the standard intellectual cul de sac:
“Why bother, it’s never going to happen.“
That’s tired and lame.

Continue reading “Machine Morality: a Survey of Thought and a Hint of Harbinger” »

Jan 3, 2013

Explaining Space Travel

Posted by in categories: asteroid/comet impacts, biological, defense, engineering, ethics, existential risks, finance, geopolitics, habitats, military, nuclear energy, nuclear weapons, space, transparency

I recently posted this on the only two other sites that will allow me to express my opinions;

I see the problem as one of self similarity; trying to go cheap being the downfall of all these schemes to work around human physiology.

When I first became interested in space travel several years ago I would comment on a couple blogs and find myself constantly arguing with private space proponents- and saying over and over again, “there is no cheap.” I was finally excommunicated from that bunch and banned from posting. They would start calling me an idiot and other insults and when I tried to return the favor the moderator would block my replies. The person who runs those two sites works for a firm promoting space tourism- go figure.

The problem is that while the aerospace industry made some money off the space program as an outgrowth of the military industrial complex, it soon became clear that spaceships are hard money- they have to work. The example of this is the outrage over the Apollo 1 fire and subsequent oversight of contractors- a practice which disappeared after Apollo and resulted in the Space Shuttle being such a poor design. A portion of the shuttle development money reportedly went under the table into the B-1 bomber program; how much we will never know. Swing wings are not easy to build which is why you do not see it anymore; cuts into profits.

Continue reading “Explaining Space Travel” »

Oct 27, 2012

Today, a Young Man on Acid Realized that all Matter is Merely Energy Condensed to a…

Posted by in categories: biological, complex systems, cosmology, engineering, existential risks, homo sapiens, human trajectories, humor, information science, particle physics, philosophy, physics


…here’s Tom with the Weather.
That right there is comedian/philosopher Bill Hicks, sadly no longer with us. One imagines he would be pleased and completely unsurprised to learn that serious scientific minds are considering and actually finding support for the theory that our reality could be a kind of simulation. That means, for example, a string of daisy-chained IBM Super-Deep-Blue Gene Quantum Watson computers from 2042 could be running a History of the Universe program, and depending on your solipsistic preferences, either you are or we are the character(s).

It’s been in the news a lot of late, but — no way, right?

Because dude, I’m totally real
Despite being utterly unable to even begin thinking about how to consider what real even means, the everyday average rational person would probably assign this to the sovereign realm of unemployable philosophy majors or under the Whatever, Who Cares? or Oh, That’s Interesting I Gotta Go Now! categories. Okay fine, but on the other side of the intellectual coin, vis-à-vis recent technological advancement, of late it’s actually being seriously considered by serious people using big words they’ve learned at endless college whilst collecting letters after their names and doin’ research and writin’ and gettin’ association memberships and such.

So… why now?

Continue reading “Today, a Young Man on Acid Realized that all Matter is Merely Energy Condensed to a...” »

Oct 5, 2012

Want to Get 70 Billion Copies of Your Book In Print? Print It In DNA

Posted by in categories: biological, biotech/medical, chemistry, futurism, information science, media & arts

I have been meaning to read a book coming out soon called Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves. It’s written by Harvard biologist George Church and science writer Ed Regis. Church is doing stunning work on a number of fronts, from creating synthetic microbes to sequencing human genomes, so I definitely am interested in what he has to say. I don’t know how many other people will be, so I have no idea how well the book will do. But in a tour de force of biochemical publishing, he has created 70 billion copies. Instead of paper and ink, or pdf’s and pixels, he’s used DNA.

Much as pdf’s are built on a digital system of 1s and 0s, DNA is a string of nucleotides, which can be one of four different types. Church and his colleagues turned his whole book–including illustrations–into a 5.27 MB file–which they then translated into a sequence of DNA. They stored the DNA on a chip and then sequenced it to read the text. The book is broken up into little chunks of DNA, each of which has a portion of the book itself as well as an address to indicate where it should go. They recovered the book with only 10 wrong bits out of 5.27 million. Using standard DNA-copying methods, they duplicated the DNA into 70 billion copies.

Scientists have stored little pieces of information in DNA before, but Church’s book is about 1,000 times bigger. I doubt anyone would buy a DNA edition of Regenesis on Amazon, since they’d need some expensive equipment and a lot of time to translate it into a format our brains can comprehend. But the costs are crashing, and DNA is a far more stable medium than that hard drive on your desk that you’re waiting to die. In fact, Regenesis could endure for centuries in its genetic form. Perhaps librarians of the future will need to get a degree in biology…

Link to Church’s paper

Source

Oct 2, 2012

Evolution in a Toxic World

Posted by in categories: biological, evolution

Earth is a hostile place — and that’s even before one starts attending school. Even when life first sparked into being, it had to evolve defenses to deal with a number of toxins, such as damaging ultraviolet light, then there were toxic elements ranging from iron to oxygen to overcome, later, there was DDT and other toxic chemicals and of course, there are all those dreaded cancers.

In Evolution In A Toxic World: How Life Responds To Chemical Threats [Island Press; 2012: Guardian Bookshop; Amazon UK;Amazon US], environmental toxicologist Emily Monosson outlines three billion years of evolution designed to withstand the hardships of living on this deadly planet, giving rise to processes ranging from excretion, transformation or stowing harmful substances. The subtitle erroneously suggests these toxins are only chemical in nature, but the author actually discusses more than this one subclass of toxins.

The method that arose to deal with these toxins is a plethora of specialised, targeted proteins — enzymes that capture toxins and repair their damages. By following the origin and progression of these shared enzymes that evolved to deal with specific toxins, the author traces their history from the first bacteria-like organisms to modern humans. Comparing the new field evolutionary toxicology to biomedical research, Dr Monosson notes: “In light of evolution, biomedical researchers are now asking questions that might seem antithetical to medicine”.

Continue reading “Evolution in a Toxic World”

Sep 28, 2012

The Social Sciences Revolution

Posted by in categories: biological, complex systems, economics, geopolitics, philosophy, policy

Scientific discovery in the natural sciences has proceeded at an exponential rate and we are now seeing the social sciences experience a profound transformation as a consequence of computational social science. How far computational social science will reinvent social science is the big question. Some of the themes I’ve explored in my own work have been about the relationship between political philosophy and science and whether the computational sciences can help formulate new conceptions of societal organisation. Many in the field seem to think so.

These three things—a biological hurricane, computational social science, and the rediscovery of experimentation—are going to change the social sciences in the 21st century. With that change will come, in my judgment, a variety of discoveries and opportunities that offer tremendous prospect for improving the human condition. It’s one thing to say that the way in which we study our object of inquiry, namely humans, is undergoing profound change, as I think it is. The social sciences are indeed changing. But the next question is: is the object of inquiry also undergoing profound change? It’s not just how we study it that’s changing, which it is. The question is: is the thing itself, our humanity, also changing? (Nicholas A. Christakis, A NEW KIND OF SOCIAL SCIENCE FOR THE 21st CENTURY)

A biological understanding of human nature combined with new insights derived from computational social science can potentially revolutionise political, social and economic systems. Consequently there are profound philosophical implications. Secular political philosophy specifically emerged out of the European experience of Church and monarchical rule, and socialism emerged out of the experience of industrialisation and capitalist ideology. Therefore is it possible that a new political philosophy could emerge out of the reinvention of the social sciences?

One question that fascinated me in the last two years is, can we ever use data to control systems? Could we go as far as, not only describe and quantify and mathematically formulate and perhaps predict the behavior of a system, but could you use this knowledge to be able to control a complex system, to control a social system, to control an economic system? (Albert-lászló Barabási, THINKING IN NETWORK TERMS)

Continue reading “The Social Sciences Revolution” »

Sep 18, 2012

The Propagation of Life: Infecting other Worlds

Posted by in categories: biological, ethics, evolution, existential risks, habitats

It is with great bewilderment that I read the precautions that NASA rovers are sterilized to, to ensure that Life does not infect the Martian environment. I understand NASA want to explore Mars for signs of Martian life — but which is more important — to explore whether Life almost evolved on Mars, or to induce the whole process and allow it to occur?

We can get caught up in the concept that preservation of Human Life as the ultimate goal, in how do we colonize other worlds as soon as possible — but perhaps the most honorable pursuit is the propagation of Life itself — we should be introducing bacteria or simple xerophytic plants to Mars, algae to Europa and such worlds, in the anticipation that if a foothold can be taken, evolution could take hold — and we may not live to see it — but we have then passed on the gift of life to another world.

Whimsical Notions or Planning With Foresight? Unless we cause our own demise by inadvertently engineering our downfall, as often discussed here, or are struck by a statistically unfortunate large asteroid impact, Life is here on Earth for the long haul — it has been durable for billions of years, albeit with significant setbacks, and one can expect it will be here for billions more to come. We may well have time on our hands.

If we sow the seeds now, we may have other worlds to move to in a few million years — long before we may need it — such as in five billion years when the Sun has expired into a Red Giant. It is quite reasonable to expect that if we seed Mars with our bacteria now, and other basic forms of life at the bottom of the food chain — in some million years from now Mars may be flourishing with vegetation — evolved to suit the terrain — that a colony there could live off.

It has been considered, that Life on Earth started by a similar process, that a comet or asteroid carrying bacteria inseminated our planet with the seeds of life. So let’s pass on the gift and stop being so prudent. Lets start at the basics, and create lifeboats of Life around our solar system. Perhaps one day our descendants will thank us for nurturing such habitats.

Sep 6, 2012

GENCODE Apocalypse

Posted by in categories: biological, biotech/medical, business, chemistry, complex systems, counterterrorism, defense, ethics, events, evolution, existential risks, futurism, geopolitics, habitats, homo sapiens, human trajectories, life extension, lifeboat, media & arts, military, open source, policy, space, supercomputing, sustainability, transparency

http://www.sciencedaily.com/releases/2012/09/120905134912.htm

It is a race against time- will this knowledge save us or destroy us? Genetic modification may eventually reverse aging and bring about a new age but it is more likely the end of the world is coming.

The Fermi Paradox informs us that intelligent life may not be intelligent enough to keep from destroying itself. Nothing will destroy us faster or more certainly than an engineered pathogen (except possibly an asteroid or comet impact). The only answer to this threat is an off world survival colony. Ceres would be perfect.