Blog

Archive for the ‘bioengineering’ category: Page 79

Oct 14, 2021

Scientists Can Grow Meat Protein. With Gene-Edited Barley?

Posted by in categories: bioengineering, climatology, genetics, sustainability

ORF Genetics in Iceland is growing 100,000 genetically engineered barley plants in a greenhouse measuring over 22 square feet (2 sq m) to create lab-grown meat.

This cutting-edge approach has the potential to lower prices, eliminate reliance on live animals in the lab-grown meat sector, and speed up the scaling-up process, according to BBC. And, with the fact that meat accounts for nearly 60 percent of all greenhouse gases from food production in mind, such a development could have far-reaching implications in the fight against climate change.

Oct 13, 2021

Ray Kurzweil — Immortality by 2045

Posted by in categories: bioengineering, government, life extension, nanotechnology, Ray Kurzweil, robotics/AI, singularity, virtual reality

Ray Kurzweil — Singularitarian Immortalist, Director of Engineering at Google, famous inventor, author of How to Create a Mind http://GF2045.com/speakers/.

A world-class prolific inventor and leading futurist author, “the restless genius” (Wall Street Journal) points to 2045 for the technological singularity when A.I. will surpass human intelligence in his New York Times best seller The Singularity is Near, Amazon’s #1 book in science and philosophy.

Continue reading “Ray Kurzweil — Immortality by 2045” »

Oct 13, 2021

Scientists Genetically Modify Plants to Grow Meat Protein

Posted by in categories: bioengineering, genetics

Researchers in Iceland are growing over 100,000 genetically modified barley plants inside a greenhouse for a very unusual purpose: creating lab-grown meat, the BBC reports.

The altered barley gets harvested and purified to extract “growth factor” proteins, which, in turn, can be used to cultivate lab-grown meat — an innovation that could make the lab-grown meat industry rely even less on live animals in the future.

The company behind the greenhouse, ORF Genetics, is growing the biogenetically engineered barley over 22,000 square feet using high-tech hydroponic cultivation methods.

Oct 11, 2021

Scientists Revive 28,000-Year-Old Woolly Mammoth Cells in Mice

Posted by in categories: bioengineering, biological, genetics

Circa 2019 o.o


The dream of resurrecting species like the woolly mammoth via genetic engineering is old enough that I remember reading articles about it in school 30 years ago. We may never be able to recover enough pristine genetic material from an intact woolly mammoth to make that approach feasible, but scientists working on the remains of the frozen mammoth known as Yuka have taken an incredible step nonetheless, demonstrating that at least some cell functions can remain intact after nearly 30,000 years.

Yuka, found in 2,010 is a juvenile woolly mammoth, considered to be the most intact and well-preserved mammoth ever found. That was critical to the researchers’ efforts — earlier tests in 2009 with a less-well-preserved but younger specimen at 15,000 years old yielded no positive results at all.

Continue reading “Scientists Revive 28,000-Year-Old Woolly Mammoth Cells in Mice” »

Oct 10, 2021

Scientists Develop New “Unbreakable Glass” Inspired by Nature — 3x Stronger, 5x More Fracture-Resistant

Posted by in categories: bioengineering, materials

Strongest and toughest glass known developed by McGill University scientists.

Scientists from McGill University develop stronger and tougher glass, inspired by the inner layer of mollusk shells. Instead of shattering upon impact, the new material has the resiliency of plastic and could be used to improve cell phone screens in the future, among other applications.

While techniques like tempering and laminating can help reinforce glass, they are costly and no longer work once the surface is damaged. “Until now there were trade-offs between high strength, toughness, and transparency. Our new material is not only three times stronger than the normal glass, but also more than five times more fracture-resistant,” says Allen Ehrlicher, an Associate Professor in the Department of Bioengineering at McGill University.

Oct 5, 2021

Dr. Maria Elena Bottazzi — National School of Tropical Medicine — Baylor College of Medicine

Posted by in categories: bioengineering, biotech/medical

Diagnosing, Treating, And Preventing Neglected Tropical Diseases — Dr. Maria Elena Bottazzi, BCM National School of Tropical Medicine, Baylor University.


Dr. Maria Elena Bottazzi (https://www.bcm.edu/people-search/maria-bottazzi-18431) is Distinguished Professor of Biology, Associate Dean of the National School of Tropical Medicine, and Professor in the Departments of Pediatrics, Molecular Virology and Microbiology, Integrative Molecular and Biomedical Sciences, and Translational Biology and Molecular Medicine, at Baylor College of Medicine.

Continue reading “Dr. Maria Elena Bottazzi — National School of Tropical Medicine — Baylor College of Medicine” »

Oct 3, 2021

Muscle-gene edit creates buff beagles

Posted by in categories: bioengineering, biotech/medical

Gene editing works at low efficiency in dogs.

Oct 3, 2021

Bioengineers Develop New Class of Giant Magnetoelastic Effect Human-Powered Bioelectronics

Posted by in categories: bioengineering, cybercrime/malcode, encryption

Traditional networks are unable to keep up with the demands of modern computing, such as cutting-edge computation and bandwidth-demanding services like video analytics and cybersecurity. In recent years, there has been a major shift in the focus of network research towards software-defined networks (SDN) and network function virtualization (NFV), two concepts that could overcome the limitations of traditional networking. SDN is an approach to network architecture that allows the network to be controlled using software applications, whereas NFV seeks to move functions like firewalls and encryption to virtual servers. SDN and NFV can help enterprises perform more efficiently and reduce costs. Needless to say, a combination of the two would be far more powerful than either one alone.

Sep 29, 2021

Unbreakable glass inspired by seashells

Posted by in categories: bioengineering, biological

Amazingly, nacre has the rigidity of a stiff material and durability of a soft material, giving it the best of both worlds,” he explains. “It’s made of stiff pieces of chalk-like matter that are layered with soft proteins that are highly elastic. This structure produces exceptional strength, making it 3,000 times tougher than the materials that compose it.


Scientists from McGill University develop stronger and tougher glass, inspired by the inner layer of mollusk shells. Instead of shattering upon impact, the new material has the resiliency of plastic and could be used to improve cell phone screens in the future, among other applications.

While techniques like tempering and laminating can help reinforce glass, they are costly and no longer work once the surface is damaged. “Until now there were trade-offs between , toughness, and transparency. Our is not only three times stronger than the normal glass, but also more than five times more fracture resistant,” says Allen Ehrlicher, an Associate Professor in the Department of Bioengineering at McGill University.

Continue reading “Unbreakable glass inspired by seashells” »

Sep 29, 2021

A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19

Posted by in categories: bioengineering, biotech/medical, health

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat. Struct. Mol. Biol. 27 846–854 (2020).

Page 79 of 218First7677787980818283Last