Blog

Archive for the ‘bioengineering’ category: Page 139

Apr 24, 2019

A first in medical robotics: Autonomous navigation inside the body

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Bioengineers at Boston Children’s Hospital report the first demonstration of a robot able to navigate autonomously inside the body. In an animal model of cardiac valve repair, the team programmed a robotic catheter to find its way along the walls of a beating, blood-filled heart to a leaky valve—without a surgeon’s guidance. They report their work today in Science Robotics.

Surgeons have used robots operated by joysticks for more than a decade, and teams have shown that tiny robots can be steered through the body by external forces such as magnetism. However, senior investigator Pierre Dupont, Ph.D., chief of Pediatric Cardiac Bioengineering at Boston Children’s, says that to his knowledge, this is the first report of the equivalent of a self-driving car navigating to a desired destination inside the body.

Dupont envisions assisting surgeons in complex operations, reducing fatigue and freeing surgeons to focus on the most difficult maneuvers, improving outcomes.

Continue reading “A first in medical robotics: Autonomous navigation inside the body” »

Apr 24, 2019

Secret to lab-on-a-chip breakthrough: Matte black nail polish

Posted by in categories: bioengineering, biotech/medical, genetics

BYU electrical engineering students have stumbled upon a very unconventional method that could speed up lab-on-a-chip disease diagnosis.

When someone goes to the hospital for a serious illness, if a bacterial infection is suspected, it can take up to three days to get results from a bacteria culture test. By then, it is often too late to adequately treat the infection, especially if the bacteria are resistant to common antibiotics.

BYU students are working on a project to diagnose antibiotic resistant bacteria, or superbugs, in less than an hour. Their method relies on extracting bacteria from a blood sample and then pulling DNA from that . If specific genetic codes indicating antibiotic resistance are present in the DNA, fluorescent molecules can be attached to these sites. Laser light can then be shined on the DNA samples and the molecules will light up.

Continue reading “Secret to lab-on-a-chip breakthrough: Matte black nail polish” »

Apr 23, 2019

Welding with stem cells for next-generation surgical glues

Posted by in categories: bioengineering, biotech/medical

Scientists at the University of Bristol have invented a new technology that could lead to the development of a new generation of smart surgical glues and dressings for chronic wounds. The new method, pioneered by Dr. Adam Perriman and colleagues, involves re-engineering the membranes of stem cells to effectively ‘weld’ the cells together.

Cell membrane re-engineering is emerging as a powerful tool for the development of next generation cell therapies, as it allows scientists to provide additional functions in the therapeutic , such as homing, adhesion or hypoxia (low oxygen) resistance. At the moment, there are few examples where the is re-engineered to display active enzymes that drive extracellular matrix production, which is an essential process in wound healing.

In this research, published in Nature Communications today, the team modified the membrane of human mesenchymal stem cells (hMSCs) with an enzyme, known as thrombin, which is involved in the wound healing process. When the modified cells were placed in a solution containing the blood protein fibrinogen, they automatically welded together through the growth of a natural hydrogel from the surface of the cells. The researchers have also shown that the resulting 3D cellular structures could be used for .

Continue reading “Welding with stem cells for next-generation surgical glues” »

Apr 18, 2019

Dr. Doris Taylor — Texas Heart Institute — IdeaXme — Ira Pastor — “How to Build a New Heart”

Posted by in categories: 3D printing, aging, bioengineering, biotech/medical, chemistry, cryonics, DNA, genetics, health, life extension

Apr 18, 2019

Light-based, 15-second scan aims to replace painful mammograms

Posted by in categories: bioengineering, biotech/medical, neuroscience

Up to 50% of women skip potentially life-saving mammograms often because the procedure can cause extreme discomfort and pain. Now researchers have developed a painless, light-based, non-radioactive, 15-second procedure that could revolutionize breast cancer screening and save lives.

Although early detection of breast cancer can significantly increase survival, the radioactive X-ray that requires painful squeezing of the breast to get a good picture is an event that women do not look forward to. Now Caltech researcher Lihong Wang, Ph.D., Bren Professor of Medical and Electrical Engineering, and his colleagues are using their expertise in imaging tissues with light and sound to address this problem. Their development of a revolutionary breast scanning system known as photoacoustic computed tomography (PACT) is reported in the June issue of Nature Communications.2

“The technique developed by Wang and his colleagues combines light and sound to peer noninvasively into tissues without the radioactivity of an X-ray,” explained Behrouz Shabestari, Ph.D., director of the Program in Optical Imaging at the National Institute of Biomedical Imaging and Bioengineering, which funded the study. “PACT is also superior to MRI, which is expensive and sometimes requires the injection of contrast agents, commonly gadolinium. Gadolinium cannot be used in individuals with kidney disease and has recently been shown to accumulate in the bones and brain with unknown long-term effects.”

Continue reading “Light-based, 15-second scan aims to replace painful mammograms” »

Apr 18, 2019

Could humans ever regenerate limbs?

Posted by in categories: bioengineering, biotech/medical

Circa 2016


Just lopped off your ring finger slicing carrots (some time in the future)? No problem. Just speed-read this article while you’re waiting for the dronebulance. …

“Epimorphic regeneration” — growing digits, maybe even limbs, with full 3D structure and functionality — may one day be possible. So say scientists at Tulane University, the University of Washington, and the University of Pittsburgh, writing in a review article just published in Tissue Engineering, Part B, Reviews (open access until March 8).

Continue reading “Could humans ever regenerate limbs?” »

Apr 17, 2019

CRISPR gene editing has been used on humans in the US

Posted by in categories: bioengineering, biotech/medical

A medical trial in the US has used CRISPR gene editing to treat humans.

Read more

Apr 17, 2019

A biosynthetic dual-core cell computer

Posted by in categories: bioengineering, biotech/medical, computing

ETH researchers have integrated two CRISPR-Cas9-based core processors into human cells. This represents a huge step towards creating powerful biocomputers.

Controlling through gene switches based on a model borrowed from the digital world has long been one of the primary objectives of synthetic biology. The digital technique uses what are known as logic gates to process , creating circuits where, for example, output signal C is produced only when input signals A and B are simultaneously present.

To date, biotechnologists had attempted to build such digital circuits with the help of protein gene switches in . However, these had some serious disadvantages: they were not very flexible, could accept only simple programming, and were capable of processing just one input at a time, such as a specific metabolic molecule. More complex computational processes in cells are thus possible only under certain conditions, are unreliable, and frequently fail.

Continue reading “A biosynthetic dual-core cell computer” »

Apr 16, 2019

Inside Arzeda’s synthetic biology lab, where industrial ingredients are brewed like beer

Posted by in categories: bioengineering, biological, chemistry

Alexandre Zanghellini can’t help but think about what makes up the world around him. Sitting in a conference room, Zanghellini considered the paint on the walls, the table, the window shades, the plastic chairs. It’s all oil.

“The entire world is made from oil. We just don’t realize it,” he said.

Zanghellini’s job, as the CEO of Seattle-based synthetic biology company Arzeda, is to reconsider how we make the basic molecules that go into anything and everything in the human world. And he has a bias for processes that use living organisms. “The tools of biology, proteins, are better at doing chemistry than chemists,” he said.

Continue reading “Inside Arzeda’s synthetic biology lab, where industrial ingredients are brewed like beer” »

Apr 15, 2019

Bioethicists Concerned over Japan’s Chimera Embryo Regulations

Posted by in categories: bioengineering, ethics

Many researchers see the move to relax the rules as a welcome change, yet some are worried the revisions don’t take public concerns enough into consideration.