Blog

Archive for the ‘bioengineering’ category: Page 136

Jul 11, 2019

Bioengineered Organs: Could Change be the horizon?

Posted by in categories: bioengineering, biotech/medical

The science of tissue engineering has been constructed on a foundation of a very simple concept; take out the patient’s own cells, grow them in a sterile environment similar to that of a human body and infuse them on a scaffolding material to provide 3-dimensional support. With this recipe, you may have your own laboratory-grown organ ready! It is interesting to note that quite a few patients have experienced the benefits of this fastest growing technology. Could change be on the horizon?

Introduction

Various scientific investigations have been frequently hailed as putting forth a novel yet a breakthrough treatment to change the meaning of lives of many patients, who have been suffering from degenerative diseases since long. However, it should be noted that researchers have to travel a really long road to turn a laboratory invention into viable clinical modalities. In this regard, current medical issues associated with gastrointestinal functioning are marred with various challenges; new solutions to take over the control are sorely needed.

Jul 11, 2019

ideaXme — Eugene Borukhovich, Global Head, Digital Health Incubation (G4A) at Bayer — Ira Pastor

Posted by in categories: aging, big data, bioengineering, biotech/medical, business, computing, drones, electronics, finance, health

Jul 10, 2019

Self-destructing mosquitoes and sterilized rodents: the promise of gene drives

Posted by in categories: bioengineering, biotech/medical, genetics

The technical challenges are not as daunting as the social and diplomatic ones, says bioengineer Kevin Esvelt at the Massachusetts Institute of Technology (MIT) Media Lab in Cambridge, who was among the first to build a CRISPR-based gene drive. “Technologies like this have real-world consequences for people’s lives that can be nearly immediate.”


Altering the genomes of entire animal populations could help to defeat disease and control pests, but researchers worry about the consequences of unleashing this new technology.

Jul 9, 2019

Neuroscience and artificial intelligence can help improve each other

Posted by in categories: bioengineering, biological, information science, neuroscience, robotics/AI

Despite their names, artificial intelligence technologies and their component systems, such as artificial neural networks, don’t have much to do with real brain science. I’m a professor of bioengineering and neurosciences interested in understanding how the brain works as a system – and how we can use that knowledge to design and engineer new machine learning models.

In recent decades, brain researchers have learned a huge amount about the physical connections in the brain and about how the nervous system routes information and processes it. But there is still a vast amount yet to be discovered.

At the same time, computer algorithms, software and hardware advances have brought machine learning to previously unimagined levels of achievement. I and other researchers in the field, including a number of its leaders, have a growing sense that finding out more about how the brain processes information could help programmers translate the concepts of thinking from the wet and squishy world of biology into all-new forms of machine learning in the digital world.

Jul 8, 2019

This design exchange consortium could accelerate the synthetic biology industry

Posted by in categories: bioengineering, biological, finance

Introducing the SBOL Industrial Consortium

To this end, a group of companies are now launching a pre-competitive consortium to support the industrial application of these technologies. The SBOL Industrial Consortium is a non-profit organization supporting innovation, dissemination, and integration of SBOL standards, tools and practices for practical applications in an industrial environment. The six founding companies of the consortium are Raytheon BBN Technologies, Amyris, Doulix, IDT, Shipyard Toolchains, TeselaGen, and Zymergen, representing a diverse set of interests and business models across the synthetic biology community.

The SBOL Industrial Consortium will facilitate industry-focused development of representational technologies in several ways. The consortium will help coordinate development of standards and tools, both with the academic community and from member to member, in order to ensure that the SBOL standards are well-tuned to support the specific industrial needs of the members of the consortium. Financial support will also be provided by the consortium for selected projects and activities, and for key pieces of community infrastructure.

Jul 5, 2019

Gene Editing Startups Fabricate Industrial-Grade CRISPR Tools

Posted by in categories: bioengineering, biotech/medical

The old DIY CRISPR tickles some, but it underwhelms others, namely, the developers of commercial applications. They prefer the new CRISPR—scalable, reliable, and deliverable.

Jul 5, 2019

Dr. Steffanie Strathdee PhD. — UCSD Center for Innovative Phage Applications and Therapeutics (IPATH) — ideaXme — Ira Pastor

Posted by in categories: aging, bioengineering, biotech/medical, counterterrorism, defense, disruptive technology, existential risks, genetics, health, life extension

Jul 3, 2019

Bacteria engineered as Trojan horse for cancer immunotherapy

Posted by in categories: bioengineering, biotech/medical, genetics

The emerging field of synthetic biology—designing new biological components and systems—is revolutionizing medicine. Through the genetic programming of living cells, researchers are creating engineered systems that intelligently sense and respond to diverse environments, leading to more specific and effective solutions in comparison to current molecular-based therapeutics.

At the same time, —using the body’s immune defenses to fight cancer—has transformed over the past decade, but only a handful of have responded, and often results in significant side effects. Designing therapies that can induce a potent, anti– immune response within a solid tumor without triggering systemic toxicity has posed a significant challenge.

Researchers at Columbia Engineering and Columbia University Irving Medical Center (CUIMC) announced today that they are addressing this challenge by engineering a strain of non– that can colonize solid tumors in mice and safely deliver potent immunotherapies, acting as a Trojan Horse that treats tumors from within. The therapy led not only to complete tumor regression in a mouse model of lymphoma, but also significant control of distant, uninjected tumor lesions. Their findings are published today in Nature Medicine.

Jul 2, 2019

Scissors get stuck—another way bacteria use CRISPR/Cas9

Posted by in categories: bioengineering, biotech/medical

In biotech these days, CRISPR/Cas9 is a hot topic, because of its utility as a precise gene editing tool. Before humans repurposed it, CRISPR/Cas9 was a sort of internal immune system bacteria use to defend themselves against phages, or viruses that infect bacteria, by slicing up the phages’ DNA.

Scientists at Emory University School of Medicine and the Max Planck Unit for the Science of Pathogens have found that the “scissors” component of CRISPR/Cas9 sometimes gets stuck.

Cas9, an enzyme that cuts DNA, can also block without doing any cutting. In the pathogenic bacterium Francisella novicida, Cas9 regulates that need to be shut off for the bacteria to cause disease.

Jul 2, 2019

Have mice really been cured of HIV using CRISPR gene editing?

Posted by in categories: bioengineering, biotech/medical

Some mice receiving a therapy that includes CRISPR gene editing appear to have been cured of HIV, but safety concerns must be overcome before human trials.