Blog

Dec 28, 2024

Numerical simulations show how the classical world might emerge from the many-worlds universes of quantum mechanics

Posted by in categories: business, education, information science, particle physics, quantum physics

Students learning quantum mechanics are taught the Schrodinger equation and how to solve it to obtain a wave function. But a crucial step is skipped because it has puzzled scientists since the earliest days—how does the real, classical world emerge from, often, a large number of solutions for the wave functions?

Each of these wave functions has its individual shape and associated , but how does the “collapse” into what we see as the classical world—atoms, cats and the pool noodles floating in the tepid swimming pool of a seedy hotel in Las Vegas hosting a convention of hungover businessmen trying to sell the world a better mousetrap?

At a high level, this is handled by the “Born rule”—the postulate that the probability density for finding an object at a particular location is proportional to the square of the wave function at that position.

Leave a reply