Blog

Oct 10, 2024

Overcoming ‘catastrophic forgetting’: Algorithm inspired by brain allows neural networks to retain knowledge

Posted by in categories: biological, information science, robotics/AI, transportation

Neural networks have a remarkable ability to learn specific tasks, such as identifying handwritten digits. However, these models often experience “catastrophic forgetting” when taught additional tasks: They can successfully learn the new assignments, but “forget” how to complete the original. For many artificial neural networks, like those that guide self-driving cars, learning additional tasks thus requires being fully reprogrammed.

Biological brains, on the other hand, are remarkably flexible. Humans and animals can easily learn how to play a new game, for instance, without having to re-learn how to walk and talk.

Inspired by the flexibility of human and animal brains, Caltech researchers have now developed a new type of that enables neural networks to be continuously updated with new data that they are able to learn from without having to start from scratch. The algorithm, called a functionally invariant path (FIP) algorithm, has wide-ranging applications from improving recommendations on online stores to fine-tuning self-driving cars.

Leave a reply