Blog

Nov 13, 2022

Researchers learn to engineer growth of crystalline materials consisting of nanometer-size gold clusters

Posted by in categories: chemistry, engineering, nanotechnology, particle physics

First insights into engineering crystal growth by atomically precise metal nanoclusters have been achieved in a study performed by researchers in Singapore, Saudi Arabia and Finland. The work was published in Nature Chemistry.

Ordinary solid matter consists of atoms organized in a crystal lattice. The chemical character of the atoms and lattice symmetry define the properties of the matter, for instance, whether it is a metal, a semiconductor or and electric insulator. The lattice symmetry may be changed by such as temperature or , which can induce structural transitions and transform even an electric insulator to an electric conductor, that is, a metal.

Larger identical entities such as nanoparticles or atomically precise metal nanoclusters can also organize into a , to form so called meta-materials. However, information on how to engineer the growth of such materials from their has been scarce since the is a typical self-assembling process.

Comments are closed.