Blog

Page 8290

Oct 21, 2019

Rocket Lab To Begin Missions To The Moon In 2020 With New ‘Photon’ Spacecraft

Posted by in categories: evolution, satellites

Smallsat launcher Rocket Lab has announced its ambition to begin missions to the Moon in the near-future, using a new satellite launch platform it has developed called Photon.

Announced today at the International Astronautical Congress in Washington D.C., Rocket Lab – which current flies its Electron rocket from New Zealand and will begin launching from a U.S. site next year – said Photon would enable small spacecraft to reach lunar orbit or conduct lunar flybys.

Photon is an evolution of the company’s existing kick stage that is used to deploy satellites in orbit, including on the company’s ninth launch last week, which saw them deploy a satellite to their highest altitude yet. It fits into the existing Electron rocket and is essentially its own standalone spacecraft, containing its own instruments, propulsion, fuel tanks, and more.

Oct 21, 2019

China’s private reusable rocket to be launched in 2021

Posted by in category: space travel

Photo shows the model of the Hyperbola-2, a reusable rocket developed by a private Chinese company. (Photo provided to Xinhua)

A Chinese reusable carrier rocket that uses liquid oxygen-methane propellants will be launched for the first time in 2021, making up for China’s lack of reusable liquid-propellant rockets.

BEIJING, Oct. 21 (Xinhua) — A Chinese reusable carrier rocket that uses liquid oxygen-methane propellants will be launched for the first time in 2021.

Oct 21, 2019

New supercomputer simulations explore magnetic reconnection and make a surprising discovery

Posted by in categories: cosmology, mobile phones, supercomputing

Magnetic reconnection, a process in which magnetic field lines tear and come back together, releasing large amounts of kinetic energy, occurs throughout the universe. The process gives rise to auroras, solar flares and geomagnetic storms that can disrupt cell phone service and electric grids on Earth. A major challenge in the study of magnetic reconnection, however, is bridging the gap between these large-scale astrophysical scenarios and small-scale experiments that can be done in a lab.

Researchers have now overcome this barrier through a combination of clever experiments and cutting-edge simulations. In doing so, they have uncovered a previously unknown role for a universal process called the “Biermann battery effect,” which turns out to impact magnetic in unexpected ways.

The Biermann battery effect, a possible seed for the magnetic fields pervading our universe, generates an electric current that produces these fields. The surprise findings, made through , show the effect can play a significant role in the reconnection occurring when the Earth’s magnetosphere interacts with astrophysical plasmas. The effect first generates lines, but then reverses roles and cuts them like scissors slicing a rubber band. The sliced fields then reconnect away from the original reconnection point.

Oct 21, 2019

How your brain protects you from the reality of your impending death

Posted by in category: neuroscience

Thank you, brain.

Oct 21, 2019

Magneto-inertial fusion experiment nears completion

Posted by in categories: nuclear energy, particle physics

Assembly of the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory is well underway with the installation of 18 of 36 plasma guns in an ambitious approach to achieving controlled nuclear fusion (Figure 1). The plasma guns are mounted on a spherical chamber, and fire supersonic jets of ionized gas inward to compress and heat a central gas target that serves as fusion fuel. In the meantime, experiments performed with the currently installed plasma guns are providing fundamental data to create simulations of colliding plasma jets, which are crucial for understanding and developing other controlled fusion schemes.

Most experiments employ either magnetic confinement, which relies on powerful magnetic fields to contain a fusion , or inertial confinement, which uses heat and compression to create the conditions for fusion.

The PLX machine combines aspects of both magnetic confinement fusion schemes (e.g. tokamaks) and inertial confinement machines like the National Ignition Facility (NIF). The hybrid approach, although less technologically mature than pure magnetic or inertial confinement concepts, may offer a cheaper and less complex fusion reactor development path. Like tokamaks, the fuel plasma is magnetized to help mitigate losses of particles and thermal energy. Like inertial machines, a heavy imploding shell (the plasma ) rapidly compresses and heats the fuel to achieve fusion conditions. Instead of NIF’s array of high-power lasers driving a solid capsule, PLX relies on supersonic plasma jets fired from plasma guns.

Oct 21, 2019

Rocket Lab—yep, Rocket Lab—has a plan to deliver satellites to the Moon

Posted by in categories: energy, satellites

A Rocket Lab spokesperson told Ars that the new service, launching on an Electron rocket, would be capable of sending up to 30kg into lunar orbit and be available as soon as the fourth quarter of 2020. As for pricing, it was not disclosed. “Pricing is tailored to mission requirements, but we’ll be bringing previously impossible missions within reach at attainable prices,” the spokesperson said.

The “Photon” spacecraft is essentially a small third stage for the Electron rocket that provides in-space maneuvering capability for payloads. It combines propulsion, power, attitude determination and control, and radiation-tolerant avionics. These combined capabilities will allow Rocket Lab to deliver small spacecraft on lunar flyby missions, into a Near Rectilinear Halo Orbit (where NASA intends to build a small space station called the Lunar Gateway), L1/L2 points, or lunar orbit. It will take up to 14 days for the Photon vehicle to deliver a payload to lunar orbit.

Oct 21, 2019

Gravity crystals: A new method for exploring the physics of white dwarf stars

Posted by in categories: food, particle physics, space

Grab a mixing bowl from your kitchen, throw in a handful of aluminum balls, apply some high voltage, and watch an elegant dance unfold where particles re-arrange themselves into a distinct “crystal” pattern. This curious behavior belongs to the phenomenon known as Wigner crystallization, where particles with the same electrical charge repel one another to form an ordered structure.

Wigner crystallization has been observed in variety of systems, ranging from particulates the size of sand grains suspended in small clouds of electrons and ions (called a dusty plasma) to the dense interiors of planet-sized , known as white dwarfs. Professor Alex Bataller of North Carolina State University has recently discovered that Wigner crystallization inside can be studied in the lab using a new class of classical systems, called gravity crystals.

For the curious behavior of Wigner crystallization to occur, there must be a system composed of charged particles that are both free to move about (plasma), that strongly interact with each other (strongly coupled particles), and has the presence of a confining force to keep the plasma particles from repulsively exploding away from each other.

Oct 21, 2019

AI Can Help You—And Your Boss—Maximize Your Potential. Will You Trust It?

Posted by in category: robotics/AI

AI is ready to become your new HR partner—Entrepreneur David Yang shows how Yva’s neural network helps companies retain and develop talent.

Oct 21, 2019

These Startups Are Building Tools to Keep an Eye on AI

Posted by in category: robotics/AI

The software can help developers constrain their creations so they don’t make bad decisions.

Oct 21, 2019

New Shape-Morphing, Self-Healing, Intelligent Material Developed for Soft Robotics

Posted by in categories: engineering, robotics/AI, wearables

Advances in the fields of soft robotics, wearable technologies, and human/machine interfaces require a new class of stretchable materials that can change shape adaptively while relying only on portable electronics for power. Researchers at Carnegie Mellon University have developed such a material that exhibits a unique combination of high electrical and thermal conductivity with actuation capabilities that are unlike any other soft composite.

In findings published in Proceedings of the National Academy of Sciences this week, the researchers report on this intelligent new material that can adapt its shape in response to its environment. The paper is titled “A multifunctional shape-morphing elastomer with liquid metal inclusions.”

“It is not only thermally and electrically conductive, it is also intelligent,” said Carmel Majidi, an associate professor of mechanical engineering who directs the Soft Machines Lab at Carnegie Mellon. “Just like a human recoils when touching something hot or sharp, the material senses, processes, and responds to its environment without any external hardware. Because it has neural-like electrical pathways, it is one step closer to artificial nervous tissue.”